МЕТАПTYXIAKH ДIATPIBH

TITAOミ ANOEOENI $X Y Y T I K E \Sigma ~ O Y \Sigma I E \Sigma ~ K A I ~ H ~ X P H \Sigma H ~ T O Y \Sigma ~ \Sigma T H N ~ E N T A T I K H ~$ IXOYOKAAAIEPГEIA

ФOITHTPIA: AIKATEPINH ZAIANTIתTH

 AӨavá бוo каı Г $\varepsilon \omega \rho \gamma i \alpha$, $\omega \varsigma ~ \varepsilon \lambda \dot{\alpha} \chi ı \sigma \pi \eta$ ह́v $v \delta \iota \xi \eta ~ \alpha \gamma \alpha \dot{\alpha} \pi \eta \varsigma$.

Etov 「ıá Vvク
$\Theta \alpha$ ク́ $\theta \varepsilon \lambda \alpha$ v α вvх $\alpha \rho \imath \sigma \tau \eta ́ \sigma \omega ~ \theta \varepsilon \rho \mu \alpha ́ ~ \tau о v ~ к \alpha \theta \eta \gamma \eta \tau \eta ́ ~ \mu о v, ~ П \alpha v \alpha \gamma ı \omega ́ \tau \eta ~ \Lambda о \gamma о \theta \varepsilon ́ \tau \eta ~ \pi о v ~$

Abstract

Intensive fish-farming is constantly pestered by infectious diseases and the fish immune system provides the critical counterbalance for maintaining good health to the reared populations. Immunoenhancing substances and concoctions can be a decisive factor in the functioning of the system at its best capacity either for restoration of normality after an immunodepressive event or, simply, for activating its various mechanisms in anticipation of a heightened risk situation. A multitude of such products, of variable provenance, has been investigated up to date belonging to the rapidly expanding greater group of so-called 'nutriceuticals' as they tend, for practical purposes, to be administered via the feed; many among them have shown promise and some have even got to be marketed. However, given the diversity of the cultivated fish species and of the rearing conditions, research must curry on to clarifying the administration protocols so as to maximise the possible benefits while, at the same time, avoiding any pitfalls of excessive dosaging which might lead to saturation and exhaustion of the immune mechanisms. More studies are also needed with live pathogen challenging for a wholesome assessment of the immune reaction and the levels of protection that can be attained. There is, also, a useful ongoing research for the elucidation of their mechanisms of action as well as of their pharmacokinetics, but this should be coupled with pilot and field studies for efficacy evaluation under real fish rearing conditions of substances and extracts that have given encouraging laboratory results. At any rate, immunoenhancers can and must be more extensively utilized as they can make an important contribution towards a future fish-farming that will be both sustainable and environment-friendly.

Перілпчп

ПEPIEXOMENA
1．EIइAГЛГH 3
1．1．इúүхрою IxӨиока Мıвंрүєіа． 4
 5
 7
 9
Өєрапеитккй аvтıцєтம்пıбוя， 10
 11
 12
1．3．इкопоі тпऽ $\Delta ı \lambda \omega \mu а т і к л я ~, ~$ 14
2．ANOミOПOIHTIKO $\Sigma Y \Sigma T H M A ~ I X \Theta Y \Omega N$ 16
 16
 18
 18
2．2．2．ЕІॅıкеu 18
 19
2．3．1．ПаӨочибіоฝоүікர் катапо́vŋоп（＇бтрес＇） 19
2．3．2．АІатро甲ர் 20
 20
3．ANOEOENI工XYTIKE OY乏IE乏 KAI EПIAPA乏EI工 TOY乏． 22
＾єßаиוбо் λ ． 22
 23
Xıtivn каı Xitoそảvך 23
β－Г入uкáveç каı бuvaчеiç ouđies， 24
Noukheotióa． 29
Фuтıкá проïóvта． 32
Кро́ $\mu \boldsymbol{u} \boldsymbol{\sim}$ ： 33
ミко́ро̄оv： 33
Zıүүіßерıс（пıперо́ррıそ̆）： 33
TріүшvéMa： 34
Tбоuкviöa： 34
4．XPH乏H ANO乏OENIइXYTIKQN इTHN IXӨYOKANAIEPTEIA 37
4．1．ПроАŋптıка́． 37
4．1．1．Апокネеıттка́ 38
 39
Xpovıбио́с тпऽ аүшүท்ৎ каı бобоһоүіа． 40
 41
4．2．Qepaneutikà 41
5．ЕФАРМОГЕ乏 ANOEOENIIXYTIKQN／TAEINOMIKH KATHГOPIA． 44
इо＾оиовıठ̃＇்． 44
о६чрриүхо́норфа． 45
Еүхє入иовıб் 45
Кипріvoвıб்ர்． 46
Пєрко́иор甲а． 47
6．ЕПIМОГОГ－ГYMПЕРАГМАТА 50
BIBAIOГРАФIA． 0

1. EI乏AГЛГH

Ta 'чápıa' aпó apxaıoтát ωv x

 каı та Өплабтıкá.

 'хєрбаіа' ктпvотрофіа к.лп..

 к.à. (FAO, 2018).

 $\mu \varepsilon ̇ \sigma o u ~ \varepsilon п ו к \varepsilon \varphi a \lambda \grave{\varsigma, ~ \sigma u v i \sigma t o u ̉ v ~ \varepsilon ̇ v a v ~ a к o ́ \mu \eta ~ п a \rho a ́ y o v t a ~ п о u ~ \mu п о р \varepsilon i ~ v a ~}$

 'кал入ıгрүптळ́v'.

 ó $\lambda \omega v$ т ωv aто́ $\mu \omega v$ поu тоиц aпартіґоuv (Segner et al., 2019):
 $\mu \varepsilon т а \beta \lambda \eta т \varepsilon \dot{\varsigma})^{*}$

 фибікохпнıкळ்v катапоvウ்бєшv.
 парабıтஸ்бєıц).

 Епон

 $\mu \varepsilon т а б о т ı к а ́ ~ v o \sigma \grave{\mu а т а, ~ a v ~ к а ı ~ \varepsilon v i o т \varepsilon ~ \mu п о р \varepsilon i ~ v a ~ \varepsilon п ı \varphi \varepsilon ́ p o u v ~ \sigma о ß a \rho \varepsilon ́ \varsigma ~ \zeta п \mu i \varepsilon \varsigma ~}$

૪ «＾єн甲оки்бтП»，

\checkmark Avoı६ıátıкп Iaıиia тои Kuпрivou，
\checkmark 加akiшon，

\checkmark Гіярбıvi $\omega \sigma \eta$ ，
» «Паттعрغ் $\lambda \omega \sigma \eta$ ，
\checkmark «Мчкоßактпрішбп»，
\checkmark इтрєптоко்ккшоп，
\checkmark «AбӨغ்vعוa tou 廿uxpoú úסatos»，
\checkmark ЕпוӨŋ入ıоки̇бтף，
\checkmark IxӨuopóvตon，
\checkmark ミапролєүviaøп，
\checkmark Bраүхıоич́к $\omega \sigma \eta$ ，
\checkmark תoסıvi ω on，

\checkmark Еگаніт \quad／इппроvouк $\lambda \dot{\varepsilon} \omega \sigma \eta$ ，
\checkmark Aıиопарабıтஸ்бєıя，

\checkmark Поллаплабıaбтıкウ่ vóбos t ωv v $\varepsilon \varphi \rho \omega \dot{v}$ ，
\checkmark Movoүعvعi¢ ßраүхıппарабıтஸ்бвı，
\checkmark＾epvai \quad on，
\checkmark Ix日uo甲日zıpiaon（Shoemaker et al．，2015• Austin \＆Newaj－Fyzul，2017）．

 aveпı日่́цクt

 voøウ்баvта а́тона．

 סuvatóv $\varepsilon п а \rho к \varepsilon ̇ \sigma т \varepsilon \rho \eta ~ \delta ı a ́ \gamma v \omega \sigma \eta . ~ A u t o ́, ~ \beta \varepsilon ß a i \omega ̧, ~ \delta \varepsilon v ~ \mu п о \rho \varepsilon i ́ ~ v a ~ ı \sigma \chi u ́ \varepsilon ı ~ ү ı a ~$

 тряія ßабıкойц тро́поиц：
 бибко入ia $\varepsilon \varphi а \rho \mu о ү \dot{\varsigma})$ ．

 пוӨavóv va $\mu \eta$ v $\lambda a \mu \beta a ́ v o u v ~ \varepsilon п а р к ウ ่ ~ Ө \varepsilon р а п \varepsilon и т ו к ウ ் ~ \delta o ̀ \sigma \eta, ~ \dot{\sigma т т ~ a u t o ́ ~ т о ~}$

 avoбопоıптוко́ бúбтп $\mu \mathrm{a}$ t $\omega \mathrm{v}$ aтó $\omega \omega$ (Austin, 2012).

 (Austin, 2012).

 avtıпapaßà入入ovtaı $\mu \varepsilon$ та пıӨavà $\omega \varphi \dot{\lambda} \lambda \eta$ - ón $\omega \varsigma$, à $\lambda \lambda \omega \sigma \tau \varepsilon$, каı үıa

 $\varepsilon к \delta \grave{\lambda} \lambda \omega \sigma \eta \mu \varepsilon т а \delta о т і к о$ и̇ voбウ́натоৎ.

 $\mu о \lambda \cup \sigma \mu a t ı к a ̀ ~ v o \sigma \grave{\mu} \mu a t a$.

 (Austin, 2012).

 tou opyavıə $\boldsymbol{\prime}$

 тпऽ «єпıбпньолоүıкウ่ ıоорропіая».

 $\mu \eta X a v ı \sigma \mu \omega ் v$ пои $\varepsilon \mu п \lambda \dot{\varepsilon} к о v т a ı:$

 $\varepsilon \cup \rho u ́ ~ \varphi a ́ \sigma \mu a ~ \mu о \lambda u \sigma \mu a t ı к \omega ் v ~ a п \varepsilon ı \lambda \dot{\omega} v ~ п \lambda \eta v, ~ o ́ \mu \omega \varsigma, ~ \mu \varepsilon ~ п \varepsilon \rho ı о \rho ı \sigma \mu \varepsilon ̇ v \eta ~$ бıа́рквıа каı апóठоoŋ•

 пробпáӨعıa va пapouбıaбӨoúv óбо то ठuvaтóv пعрıббóтєра aпó та ката́

 плаібı。

 $\mu \varepsilon т а ß \lambda \eta т \dot{\omega} v, \mu п о \rho \varepsilon і ~ v a ~ \varepsilon i v a ı ~ к а ı ~ т а ~ \lambda \varepsilon ү о ́ \mu \varepsilon v a ~ ` п \rho о ß ı о т ı к а ́ ', ~ \mu а \zeta і ~ \mu \varepsilon ~ т а ~$

2. ANO

 $\varepsilon \mu п \lambda \varepsilon ่ к \varepsilon т а ı . ~$

Ta $\lambda \varepsilon \mu \varphi о \varepsilon ı \delta \grave{~ o ́ \rho ү a v a ~ к а ı ~ ı \sigma т о і ~ п \varepsilon \rho ı \lambda a \mu ß a ́ v o u v: ~}$

 $\lambda \varepsilon \mu \varphi о к и ̇ т т а \rho а ~ к а ı, ~ \delta \varepsilon \cup т \varepsilon \rho \varepsilon \cup o ́ v т \omega \varsigma, ~ \mu а к р о ф a ́ y a, ~ п \varepsilon ́ \rho a v ~ т \omega v ~ \beta a \sigma ı к \omega ่ v ~$
 т ωv T- $\lambda \varepsilon \mu \varphi о к и т т a ́ \rho \omega v . ~$

 катá тŋv ovтоүદ́vєoŋ (ibid.).

 $\varepsilon \rho \cup Ө \rho o ́ ~ к а ı ~ \lambda і ү о ~ \lambda \varepsilon и к о ́ ~ п о \lambda \varphi o ́ . ~ В о \eta Ө \eta т ı к о ́ ~ \sigma т \eta v ~ a ı \mu о п о і \eta \sigma \eta, ~ \sigma u \sigma \sigma \omega \rho \varepsilon и ́ \varepsilon ı ~$

 $\lambda \varepsilon \mu \varphi о к и ́ т т а р а ~ \delta ı а ~ т а ~ п \varepsilon р а ı т \dot{\varepsilon} \rho \omega$.

 ßıопаӨoүóvav（Secombes，1996）．

 китта́р $\omega v \mu \varepsilon \varepsilon \xi \omega$ киттарıкウ่ катабтро甲ウ́ тоus（Shen et al．，2002）．
 avoбiaц каı хшріそоvтаı бє ипокатпүорієৎ：
－Túпоu «B»，поu парáyouv ta avtıб்́цата．

 Nakanishi，1996）．
Ta $\lambda \varepsilon І т о и р ү ı к а ́ ~ \lambda \varepsilon \mu \varphi о к и ́ т т а \rho a ~ \varepsilon \mu \varphi a v i \zeta о v t a ı ~ т \varepsilon \lambda \varepsilon u t a i a ~ \sigma т \eta v ~ o v t o ү \varepsilon ̇ v \varepsilon \sigma \eta ~$

 $\varepsilon ו \delta ı к \varepsilon u \mu \varepsilon ̇ v \eta \varsigma ~ a v o \sigma i a \varsigma, ~ a v ~ k a ı ~ \mu п о \rho o u ́ v ~ \varepsilon п i ̈ \eta \varsigma ~ v a ~ \omega \varphi \varepsilon \lambda \eta \theta o u ́ v, ~ \delta \varepsilon v ~ \delta \rho o u ́ v ~$

2．2．1．Aveıठiкعutn avooia

 $\beta ı \mu о \rho i \omega v, \sigma \omega \mu a t ı \delta i \omega v ~ \grave{~ k u t t a ́ \rho \omega v . ~ H ~ a v a y v \dot{\rho} \rho ı \sigma \eta ~ t \omega v ~ a \lambda \lambda о т \rho i \omega v ~ u \lambda ı к \dot{v v}}$

 દそֹ่：
 тоіхшна тшv 乃актпрі ωv ．

 $\omega \varsigma ~ ‘ к а т а ı ү і ठ а ' ~ \beta ı о \mu о р і \omega v ~ п о и ~ к а т а \lambda \grave{\gamma \varepsilon ı ~ о т \eta v ~ к а т а б т р о ф и ̆ ~ т \omega v ~}$ β ィопаӨоүóvตv та опоіа avaүvөрi弓оvтаı（Uribe et al．，2011）．

2．2．2．Еıठıкєu

 ки́ттара）：

 каı t T

 $\xi \varepsilon \chi \omega$ рıбтои́c pò̀ous．

 тUXóv $\varepsilon п о ́ \mu \varepsilon v \eta ~ \varepsilon п а \varphi ウ ่ ~ \mu \varepsilon ~ т о ~ і ठ ь о ~ \beta ı o п a \theta o y o ́ v o ~(U r i b e ~ e t ~ a l ., ~ 2011) . ~$

 （Bowden，2008）．

2．3．Проßлйната тои avoбопоוŋтікой $\sigma \varepsilon$ ouvӨウ்кєя ıхӨиока入лıغ்рүعıая

2．3．1．ПаӨофибıлоүıкй катапóvŋбп（＇отрес＇）

－avӨрஸ்пıvoı хєıрıбноі（غ்бта каı пробгктıкоі），

 үа тŋv $\varepsilon u \zeta \omega i a ~ t \omega v ~ к а \lambda \lambda ı \rho \rho ү o u ́ \mu \varepsilon v \omega v ~ \psi a \rho ı \dot{v}$（Tort，2011）．

 каı то avoбопоıŋтіко́ бúбтпиа．

2．3．2．АІатро甲

 бıà甲ороu̧ парáyovtя̧ поu бuرßà入入ouv бтŋv $\varepsilon u \zeta \omega i a ~(~ \beta \lambda . ~ к а ı ~ п а р а п a ̀ v \omega) . ~$

 عп।Өицптウ่
(ibid.).

3. ANO

 $\varepsilon п \eta \rho \varepsilon a ́ \zeta \varepsilon т a ı ~ \sigma т \eta v ~ \lambda \varepsilon ı т о и \rho ү i a ~ т о u ~ a п o ́ ~ \mu ı a ~ \sigma \varepsilon ı \rho a ́ ~ п a \rho a ү o ́ v т \omega v, ~ u п a ́ \rho х о u v ~$

 «avoooevioXUTIKá».

- $\Lambda \varepsilon \beta a \mu ı \sigma o \dot{\lambda} \eta$

 $\varepsilon \beta \delta о \mu \dot{\alpha} \delta \varepsilon \varsigma$ бтоus $20^{\circ} \mathrm{C}$. Oı Alvarez-Pellitero et al. (2006) пapatn่ \quad п $\sigma a v$

－Moupaцu入обıпептібıо каı бuva甲й ßактпрıакá
Tо $\mu о и р а \mu и \lambda ı к о ́ ~ \delta ı п е п т і б ı о ~(m u r a m y l ~ d i p e p t i d e, ~ M D P) ~ \varepsilon i v a ı ~ \varepsilon ̇ v a ~$

 параүóvtшv апо́ та $\lambda \varepsilon \cup к о к и ̇ т т а р а ~(к и т о к і v \varepsilon \varsigma), ~ а \lambda \lambda a ́ ~ к а ı ~ п р о б т а б і а ~$

 ßактпрıакд́ ки́ттара Mycobacterium sp．）а入入à каı à $\lambda \lambda a$ ßактпрıакá

 （Boltaña et al．，2011）．Ако́ $\mu \eta$ каı avтıßактпрıака́ $\varepsilon \mu ß \dot{\lambda} \lambda ı a$ aпó о入óклпра

 парабквиабна́тшv（Sakai，1999；Nya \＆Austin，2010）．
－Xıtivn кaı XıtoZ̧ávn

 тпऽ aү由үウ́c (Kawakami et al., 1998 aпó Sakai, 1999).

 тПv $147 \mu \varepsilon ̇ \rho a ~(A n d e r s o n ~ \& ~ S i w i c k i, ~ 1994 ~ a п o ́ ~ A n d e r s o n, ~ 1996) . ~ T o ~ i ठ ı o ~$

 Vallejos-Vidal et al., 2016).

- β-Гגukávec кaı ouvapeic ouoies

 (ibid.). O ßaбıкós $\mu \eta$ Xavıб
ouvס́̇ovtaı $\mu \varepsilon$ tous avtıotoıxoúvtȩ unoठoxzi̧，túnou PRRs，ota

 عпїпऽ，$\varepsilon \mu п \lambda \varepsilon ̇ к о v т а ı ~ к а ı ~ \sigma т \eta v ~ \varepsilon v i \sigma \chi u \sigma \eta ~ \chi u \mu ı к \omega ் v ~ п а р а ү o ́ v t \omega v ~(D a l m o ~ \& ~$ Bøgwald，2008）．

 Rodríguez et al．（2009 aпó Meena et al．，2013）xрๆбıиопоinбav $\varepsilon v \delta о \mu и і ̈ к ウ ่ ~$

 є६оuठєтєрผ̈vouv то ßактйрıо．

 нıкро́ хроvıко́ ठіа́бтпиа бто бо入оно́ Oncorhynchus tshawytscha（Nikl et al．， 1993 апо́ Meena et al．，2013），ото а甲рıкаvıко́ үато́чаро（Clarias gariepinus）（Yoshida et al．， 1995 aпó Meena et al．，2013），бтףv тбוпоúpa （Sparus aurata）（Ortuno et al． 2002 aпó Meena et al．，2013），kaı бтоv ıvঠıкó кuпрivo（Labeo rohita）（Sahoo kaı Mukherjee， 2002 aпó Meena et al．， 2013）．Oı Yano et al．（1991 anó Anderson，1996）ßpウ่кav ótı ol $\beta-1,6$
 кипріvo．Enions，оı Jeney кaı Anderson（1993a каı b aпó Anderson，1996）

 $\mu к \rho о о \rho ү a v ı \sigma$ ои́я Yersinia ruckeri kaı Aeromonas salmonicida．Паро́ноıа ウ̇баv та апотвлદ̇бцата тшv Chen \＆Ainsworth（1992 aпо் Anderson，1996）
 （Ictulurus sp．）aпó тоv пaӨoүóvo μ ıкроорүavıఠнó Edwardsiella ictaluri．

 пغ்бтро甲а（Oncorhynchus mykiss）（Guselle et al．， 2007 aпó Meena et al．， 2013）．Oı Bagni et al．（2005 aпó Meena et al．，2013）пapaтńpクoav aúछnon

 пробтабіа апह̇vavтı бто Flexibacter columnaris. Ако́на, паратпрウ்Өпкаv

 п入áбна апо́ то á $ү x о \varsigma$.

 avoooпоוŋтікஸ்v $\lambda \varepsilon ו т о u p ү ı \dot{\omega} v$.

 $\beta \varepsilon \lambda t i \omega \sigma \eta$.

 al., 2020). Епוпро́бӨ\&та, о ו Dawood et al. (2020 aпó Rodrigues et al., 2020)

Oı Siwicki et al. (2004 aпó Meena et al., 2013) пعıранатібтпкаv бє

 үранншто́ үато́чаро (Pangasianodon hypophthalmus) a入入á, $\mu \varepsilon т а \dot{~ a п o ́ ~}$

 Huu et al．， 2019 aпó Rodrigues et al．，2020）．Паро́ноıа апотєлغ́б μ ата
 то ßактйрı Aeromonas hydrophila（DiDomenico et al．， 2017 aпó Rodrigues

 $\varepsilon \rho \varepsilon Ө і \sigma \mu a т а ~ о ் п \omega \varsigma ~ т о ~ б т р \varepsilon \varsigma ~(A k r a m i e n e ~ e t ~ a l ., ~ 2007 ~ a п о ் ~ R o d r i g u e s ~ e t ~ a l ., ~$
 Rodrigues et al．，2020）．

 ки́ттарa»）（Gantner et al．，2003；Herre et al．，2004；aпó Meena et al．，

 та ßıопа日oүóva a入入á каı η пıо $\mu а к р о ́ х \rho о v \eta ~ а п о т \varepsilon \lambda \varepsilon \sigma \mu а т ı к о ́ т \eta т а ~ т \omega v ~$

2000; Rice et al., 2002; aпó Meena et al., 2013). H $\mu \eta$ عוठוкウ் (ウ่ $\dot{\varepsilon} \mu \varphi \cup T \eta)$ avooia апотєлєi тףv пры́тף үра $\mu \mu \dot{~ a ́ \mu u v a s ~ к а т a ́ ~ п a Ө о ү o ́ v \omega v ~}$

 $\varepsilon к т \varepsilon Ө \varepsilon i ~(P e i s e r ~ к a ı ~ G o r d o n, ~ 2001 ; ~ R i c e ~ e t ~ a l ., ~ 2002 ; ~ a п o ́ ~ M e e n a ~ e t ~ a l ., ~$ 2013).

- Noukлеотібіа

 плпрофорієя опнатобо́тпопऽ бта ки́ттара (Carver and Walker, 1995 aпо் Li et al., 2015). Ta vouк $\lambda \varepsilon о т і \delta ı a ~ \mu п о \rho o u ́ v ~ v a ~ \delta \eta \mu ı о и р \eta Ө o u ́ v ~ d e ~ n o v o ~ a п o ́ ~$

 ($\varepsilon \vee a \lambda \lambda а к т ı к \grave{~ о б о ́ \varsigma), ~ т \eta ~ \delta р а \sigma т ı к о ̇ т \eta т а ~ т \eta \varsigma ~ \lambda u \sigma o \zeta u ́ \mu \eta \varsigma, ~ т \eta ~ \varphi a ү о к u т т а ́ \rho \omega \sigma \eta ~}$

 chrysops x M. saxatilis (Li et al., 2004 aпо் Li et al., 2015) óпшऽ каı то Sciaenops ocellatus (Cheng et al., 2011 aпо่ Li et al., 2015) та опоіа

 Li et al．，2015），घ̇va $\varepsilon \mu п о \rho ı к \grave{~} \sigma \cup \mu п \lambda \grave{\rho} \rho \omega \mu$ а vouк $\lambda \varepsilon о т ו \delta i \omega v$（Ascogen），поu

 $\varepsilon \mu \varphi$ ávioav oı Burrells et al．（2001b anó Li et al．，2015），$\mu \varepsilon$ бо入oнó tous At入avtıkoù，kä̀̀s kaı oı Leonardi et al．（2003 aпó Li et al．，2015）$\mu \varepsilon$ ıрıঠi弓оuđa пغ்бтроча．Eпioņ，kaı oı Li et al．（2004 aпó Li et al．，2015）бтףv

 Burrells et al．（2001b aпó Li et al．，2015）a乡ıопоinoav autウ่ тףv бтратпүıкウ่

 （2001 aпó Li et al．，2015）$̇ \delta \omega \omega \sigma a v ~ \sigma \varepsilon ~ к u п р i v o u s ~ \mu \varepsilon ~ п \varepsilon п т ו к o ́ ~ к а Ө \varepsilon т ர ் \rho a ~$

 （Li et al．， 2004 aпo่ Li et al．，2015），то Aquagen™ бто Kuпpıvoعıठ்̧́ Epalzeorhynchos bicolor（Russo et al．， 2007 aпó Li et al．，2015），то Optimûn otnv ıрıठi弓ouđa пغ்бтро甲a（Tahmasebi－Kohyani et al．， 2011 aпó Li et al．，2015），ウ่ то $\varepsilon \lambda \varepsilon \dot{\cup} \theta \varepsilon \rho$ о IMP oтףv $\varepsilon \lambda a$ ıóy $\lambda \omega \sigma \sigma a$ Paralichthys olivaceus （Song et al．， 2012 aпó Li et al．，2015）．Епוпроб日ह่т ω ¢，ol Burrells et al．

 vouk入єотוסíwv．תбтóбo，ol Welker et al．（2001 aпó Li et al．，2015）ठعv

 бтрєऽ．

 óxı $\mu \varepsilon т$ á anó $120 \eta \mu \varepsilon ̇ \rho \varepsilon \varsigma^{*}$ o μ oí ω, ol Li et al. (2004 anó Li et al., 2015)

 uпápxouv каı аркєтغ่ऽ $\mu \varepsilon \lambda \varepsilon ่ т \varepsilon \varsigma ~ п о u ~ \delta \varepsilon i x v o u v ~ п р о \varsigma ~ т \eta v ~ к а т \varepsilon u ́ Ө u v o \eta ~ \varepsilon v o ́ \varsigma ~, ~$ bona fide avoooعvıбXutıкoú: үıa пa

 впıßiшoŋ каı тпv avoooaпóкрıоп ката̀ тоu Vibrio parahaemolyticus ото
 Пгрковıठ்́ऽ Oplegnathus fasciatus, ol Jung \& Jung (2017 anó Xue et al.,

 пои вирібквтаı бта накрофáyа каı бта B-入єн甲оки́ттара (Xue et al., 2019) a $\lambda \lambda$ á uпápxouv кaı $\mu \varepsilon \rho ı к a ́ ~ a v a ̀ \lambda o ү a ̀ ~ t o u . ~$

- Фutiká проïóvta

 үivovtaı, $\mu \varepsilon т a \xi \dot{u}$ à $\lambda \lambda \omega v$, кaı $\mu \varepsilon$ чápıa (Reverter et al., 2014; Awad \& Awaad, 2017). $\Delta \varepsilon v$ пр $п п \varepsilon ו, ~ \delta \varepsilon, ~ v a ~ \lambda \eta \sigma \mu o v \varepsilon i t a ı ~ o ́ t ı ~ \eta ~ x \rho ウ ் \sigma \eta ~ \varepsilon v o ́ \varsigma ~ \varphi u t ı к о u ́ ~$

 $\mu \varepsilon \lambda \varepsilon ̇ t \eta ~ T \omega v ~ A k r a m i ~ e t ~ a l . ~(2015 ~ a п o ́ ~ A w a d ~ \& ~ A w a a d, ~ 2017) ~ غ ́ \delta \varepsilon ı \xi \varepsilon ~ o ́ t ı ~ \eta ~$

 al., 1991 aпó Shakya \& Labh, 2014). Oı Aly \& Mohamed (2010 aпó Shakya
 niloticus $\mu \varepsilon ் \sigma \omega ~ т \eta \varsigma ~ т а х \varepsilon i a \varsigma ~ a u ́ \xi \eta o \eta \varsigma ~ t \omega v ~ \mu о v о к и т т a ́ \rho \omega v ~ п р a ́ ү \mu a ~ п о u ~ ү ı a ~$

غ́ठहı६av o। $\mu \varepsilon \lambda \varepsilon ่ т \varepsilon \varsigma ~ t \omega v ~ N y a ~ \& ~ A u s t i n ~(2009 ~ a n o ́ ~ A w a d ~ \& ~ A w a a d, ~ 2017) ~ \mu \varepsilon ~$

 aú $\ddagger \eta \neq \eta ~ t \eta \varsigma ~ a v t i \sigma t a \sigma n s ~ \sigma \varepsilon ~ \mu o ́ \lambda u v o n ~ \mu \varepsilon ~ A e r o m o n a s ~ h y d r o p h i l a ~ k a ı ~ V i b r i o ~$

 (2015 aпó Awad \& Awaad, 2017) kaı tous Bahi et al. (2017 anó Awad \&

 пह்бтрора апо́ тоuc Awad \& Austin (2010 aпó Awad \& Awaad, 2017) кaı tous Awad et al. (2011 aпó Awad \& Awaad, 2017) $\mu \varepsilon$ апот $\dot{\lambda} \lambda \varepsilon \sigma \mu a \operatorname{va}$

 Eión.

 Immanuel et al．（2009 aпó Awad \＆Awaad，2017）Xорウ́үๆoav عкхú入ıб μa

 каӨ்่ऽ каı ка入úтєрף $\varepsilon п ß ß i \omega \sigma \eta ~ a п \varepsilon ่ v a v т ı ~ \sigma т о ~ V i b r i o ~ v u l n i f i c u s . ~ E v ~ т \varepsilon ่ \lambda \varepsilon ı, ~ \eta ~$

 ठокıца́бтпкє in vitro aпó тоus Kim et al．（1998 aпо́ Awad \＆Awaad，2017）
 $\mu а к р о ф a ́ \gamma \omega v ~ к а ı ~ a u ́ \xi \eta \sigma \eta ~ т \eta \varsigma ~ a v a п v \varepsilon u \sigma т ı к ウ ่ \varsigma ~ \varepsilon ่ к \rho \eta \xi \eta \varsigma . ~ \Sigma \varepsilon ~ a ̀ \lambda \lambda \eta ~ \mu \varepsilon \lambda \varepsilon ่ т \eta, ~ o ו ~$ Awad et al．（2015 aпo่ Awad \＆Awaad，2017）хрпбıнопоinбav

 тоиц，óпшऽ апо் то Astragalus membranaceus поu oı Zahran et al．（2014

 Awad \＆Awaad，2017）．

 o入oह̇va auदavó $\mu \varepsilon v o u s ~ \rho u Ө \mu o u ́ s, ~ ү i v \varepsilon t a ı ~ \varphi a v e \rho o ́ ~ o ́ t ı ~ \sigma u ́ v т о \mu a ~ \mu п о \rho \varepsilon i ~ v a ~$

 aпó орıбノદ̇va кuтtapıvoúxa uпопроïóvтa 甲utáv.

4．XPH亡H ANOIOENİXYTIKתN $\Sigma T H N ~ I X O Y O K A \Lambda \Lambda I E P \Gamma E I A ~$

4．1．Пролпптіка่

 пре்пєı пávтотє va $\lambda a \mu ß a ̀ v \varepsilon т a ı ~ u n ' ~ o ́ \psi ı v, ~ \omega ̧ ~ u \eta ~ \delta u v a ́ \mu \varepsilon v \eta ~ v a ~ т р о п о п о ı \eta \theta \varepsilon i, ~$ каı перıланßàvouбa：

 $\varepsilon \varphi а \rho \mu о \sigma \theta \varepsilon i ~ \eta ~ т \varepsilon \chi v \eta т \omega ் \varsigma ~ п р о к а \lambda о u ́ \mu \varepsilon v \eta ~ a v o \sigma o \varepsilon v i \sigma \chi u \sigma ı \varsigma . ~$

 профи入áそ६மऽ．

 каı плクӨибцой）．

Toúto $\varepsilon v \varepsilon ่ \chi \varepsilon ı ~ к a ı ~ т \eta v ~ o \eta \mu a \sigma i a v ~ т \eta \varsigma ~ \varepsilon к т ı \mu ウ ் \sigma \varepsilon \omega \varsigma ~ т \eta \varsigma ~ \sigma \chi \varepsilon т ı к ウ ่ \varsigma ~ a \xi i a \varsigma ~ ү ı a ~$

4.1.1. Апоклеıбтіка̇

 tņ ovtoyėveanc (Bricknell \& Dalmo, 2005).
 avoбокатапієбך (бє $\mu \varepsilon ү а \lambda ப ் т \varepsilon \rho \varepsilon \varsigma ~ \delta o ́ \sigma \varepsilon ı \varsigma) ~ ウ ่, ~ a п \lambda a ́, ~ a v o x ウ ் ~ к a ı, ~ a ̀ p a, ~$ $\mu \eta \delta a \mu ı v o ́ ~ o ́ \varphi \varepsilon \lambda o s ~(i b i d) .$.

 (Raa, 2000).

Мह̇Өоठoı xopŕvnonc.

 $\mu \varepsilon ̇ ү ı \sigma т а ~ а п о т \varepsilon \lambda \varepsilon ̇ \sigma \mu а т а ~ к а ı, ~ \mu a ̀ \lambda ı \sigma т а, ~ \sigma U \sigma т \eta \mu ı к \dot{\varrho} \varsigma ~ a \lambda \lambda a ́, ~ \varepsilon \xi ~ \varepsilon v a v t i a \varsigma, ~$

 $\omega \varsigma ~ п р о \varsigma ~ т \eta v ~ а п о т \varepsilon \lambda \varepsilon \sigma \mu а т і к о ́ т \eta т а ~ т \eta \varsigma ~ x о \rho ク ் ץ \eta \sigma \eta \varsigma, ~ \delta \eta \lambda . ~ ү і а ~ т \eta v ~ \lambda \grave{\psi \eta ~}$

 ठІатрофıкウ் хорウ́үпоп．

Xpoviouós ths aywrís kaı סooo入ovia．

 ó $\mu \omega \varsigma, ~ Ө a ~ п \rho \varepsilon ́ п \varepsilon ı ~ v a ~ ү і v \varepsilon т a ı ~ \sigma \varepsilon ~ ठ o ́ \sigma \varepsilon ı \varsigma ~ к a ı ~ \sigma \varepsilon ~ X \rho o v ı к o ́ ~ o \rho i \zeta о v т a ~ п о u ~ v a ~$

 （Álvarez－Rodríguez et al．，2018）．Епон $\varepsilon \dot{v} \omega \varsigma$ ，عivaı протıио́тєро va

 ү λ икаvढ́v) $\mu п о \rho \varepsilon і ~ v a ~ о \delta \eta ү \eta ் \sigma \varepsilon ı ~ а к о ́ \mu \eta ~ к а ı ~ \sigma т \eta v ~ \mu а к р о п р о ́ \theta \varepsilon \sigma \mu \eta ~$

 2000). 'Eva à $\lambda \lambda 0$ п $\lambda \varepsilon о v \varepsilon ́ к т \eta \mu a ~ т о u ~ \sigma u v \delta ̄ u a \sigma \mu o u ́ ~ \mu п о \rho \varepsilon i ~ к a ́ \lambda \lambda ı \sigma т a ~ v a ~ \varepsilon i v a ı ~ \eta ~$

 $\theta \varepsilon \omega \rho \varepsilon і т а ı ~ п \omega \varsigma ~ \mu п о \rho o u ́ v ~ \varepsilon v i o t \varepsilon ~ v a ~ \delta \rho a ́ \sigma o u v ~ \omega \varsigma ~ a v o \sigma o \varepsilon v ı \sigma \chi u т ı к a ́ ~(S a k a i, ~$

4.2. Oعрапвитіка́

 xpovi ωv vooŋnuát ωv.

 vooñoॄ ω (Raa, 2000; Alvarez-Pellitero, 2008).

 $\mu \varepsilon ் \sigma \omega ~ t \omega v ~ ф а ү о к и т т а \rho ı к \dot{\omega} v ~ \mu \eta \chi a v ı \sigma \mu \dot{v}$ (Sakai, 1999).

5．EФAPMOГE乏 ANO乏OENI乏XYTIKתN／TAミINOMIKH KATHГOPIA

－इо入оиовıठウ்．

Oı Siwicki et al．（1994 aпó Vallejos－Vidal et al．，2016）ठокінабаv

 tou avooorvioxutikoú．
 ıрıঠі广оиба пغ்бтроча，oı Nya \＆Austin（2009 каı 2011 aпó Vallejos－Vidal et

 hydrophila．

－Оदॄирриүхо́норфа

Oı Heidarieh et al．（2011 aпó Vallejos－Vidal et al．，2016）xopウ́ynoav סúo $\varepsilon \mu п о р ı к а ́ ~ \sigma к \varepsilon \cup a ̀ \sigma \mu а т а ~ \sigma т о ~ \psi a ́ p ı ~ H u s o ~ h u s o, ~ \xi \varepsilon x \omega \rho ı \sigma т a ̀ ~ к а ı ~ \sigma \varepsilon ~ \sigma u v \delta u a \sigma \mu o ́ ~ ү ı a ~$

－Eyxe入uoعión．

- Kuпpivoziठŋ́.

Oı Misra et al. (2006 aпó Vallejos-Vidal et al., 2016) пعוранатібтпкаv $\mu \varepsilon$

 Aeromonas hydrophila kaı Edwardsiella tarda. H غ́pعuva tov Abasali \& Mohamad (2010) бтŋv غ́pعuvà tous пєıранатібтпкаv $\mu \varepsilon$ тоv кипрivo
甲utஸ்v (Ocimum basilicum, Cinnamomum zeylanicum, Juglans regia, Mentha

 Aeromonas hydrophila．
－Пєрко́норфа．
Oı Ortuño et al．（2002 aпó Vallejos－Vidal et al．，2016）xpףбıиопоinのav

 Fibosel кal VitaStim（ $1 \mathrm{~g} / \mathrm{Kg}$ IXӨиотро甲ஸ்v， $10 \mathrm{~g} / \mathrm{Kg}$ IXӨчотро甲ஸ்v）$\sigma \varepsilon$

 μ ккооорүаvıбнó Photobacterium damselae subsp. Piscicida. Oı Bagni et al. (2000 aпo่ Vallejos-Vidal et al., 2016) xрףбıиопоinбav то вцпорıко்

 t ω v 3 кúk $\lambda \omega v$. Eníans oו Bagni et al. (2005, anó Vallejos-Vidal et al., 2016)

 $\eta \mu \varepsilon ่ \rho \varepsilon \varsigma) ~ \delta \varepsilon v ~ \beta \rho \varepsilon ̇ \theta \eta \kappa \varepsilon ~ к а v \varepsilon ̇ v a ~ a п о т \varepsilon ่ \lambda \varepsilon \sigma \mu a . ~ Е п ı п \lambda \varepsilon ̇ o v, ~ o l ~ C o u s o ~ e t ~ a l . ~(2003, ~$ aпȯ Vallejos-Vidal et al., 2016) ठокіцабаv то єнпорıко́ бкєúaбна Macrogard

 Scutellaria radix) ото ψ àpı Oreochromis niloticus $\dot{\text { ह̇лaßav }}$ סiaıta үıa 4

6. EПI^OГO乏- ГYMПEPAMATA

 т ω v vooquát ω v поu $\mu п о \rho \varepsilon i ~ v a ~ \varepsilon \mu \varphi a v ı \sigma \theta \varepsilon i ~ \sigma т о ~ к a ́ \theta \varepsilon ~ E i ́ ठ o \varsigma . ~ E i v a ı ~ \lambda о ү ı к o ́ ~ v a ~$

 кaı $\sigma т \eta v ~ \varepsilon \varphi a \rho \mu о \sigma \mu \varepsilon ́ v \eta ~ \varepsilon ́ \rho \varepsilon u v a, ~ \varepsilon i v a ı ~ т a ~ \varepsilon \xi \eta ் ৎ: ~$

 عvعрүопоıвітаı/oúvтaı;
 каı үıа по́бо ठıаркві;

 тúпоu Өعрапвіа ض் про̀ $\lambda \eta \psi \eta$.

 $\mu \eta x a v i \sigma \mu o u ́ \varsigma ~ t o u ~ \sigma u \sigma т \grave{\mu} \mu a t o \varsigma ~ a v a ̀ \lambda o ү a ~ \mu \varepsilon ~ т ı \varsigma ~ \varepsilon к а ́ \sigma т о т \varepsilon ~ a v a ́ ү к \varepsilon \varsigma . ~ Ү п a ́ p х \varepsilon ı, ~$

 $\mu \varepsilon ̇ \chi \rho ı ~ \sigma т і ү \mu ウ ่ \varsigma, ~ \varepsilon \rho \varepsilon u v \eta \theta \varepsilon i . ~$

BIB^IOГРАФIA

- Abram Q.H., Dixon B., Katzenback B.A. (2017). Impacts of low temperature on the teleost immune system. Biology 6, 39. 15pp..
- Alvarez-Pellitero P., Sitjà-Bobadilla A., Bermúdez R, Quiroga M.I. (2006). Levamisole activates several innate immune factors in Scophthalmus maximus (L.) (Teleostei). Int. J. Immunopathol. Pharmacol. 19, 72738.
- Alvarez-Pellitero P. (2008). Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet. Immunol. Immunopathol. 126, 171-98.
- Álvarez-Rodríguez M., Pereiro P., Reyes-López F.E., Tort L., Figueras A., Novoa B. (2018). Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish (Danio rerio). Front. Immunol. 9, 1575. 16pp..
- Anderson D.P. (1992). Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annu. Rev. Fish Dis. 2, 281-307.
- Anderson D.P. (1996). Environmental factors in fish health: immunological aspects. In: Iwana G. \& Nakanishi T. (Eds.). The Fish Immune System: Organism, Pathogen, and Environment. Academic Press, New York, N.Y., U.S.A.. pp.289-310.
- Austin B. (Ed.) (2012). Infectious Disease in Aquaculture: Prevention and Control. Woodhead Publishing, Sawston, England, U.K.. 530pp..
- Austin B. \& Austin D.A. (2016). Bacterial Fish Pathogens: Disease of Farmed and Wild fish (6th Edn.). Springer International Publishing, Switzerland. 761pp..
- Austin B. \& Newaj-Fyzul A. (Eds.) (2017). Diagnosis and Control of Diseases of Fish and Shellfish. John Wiley \& Sons, Chichester, England, U.K.. 300pp..
- Awad E. \& Awaad A. (2017). Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 67, 40-54.
- Barman D., Nen P., Mandal S.C., Kumar V. (2013). Immunostimulants for aquaculture health management. J. Marine Sci. Res. Dev. 3, 134. 11pp..
- Boltaña S., Roher N., Goetz F.W., Mackenzie S.A. (2011). PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. Dev. Comp. Immunol. 35, 1195-1203.
- Bowden T.J. (2008). Modulation of the immune system of fish by their environment. Fish Shellfish Immunol. 25, 373-83.
- Bricknell I. \& Dalmo R.A. (2005). The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol. 19, 457-72.
- Cook M.T., Hayball P.J., Hutchinson W., Nowak B.F., Hayball J.D. (2003). Administration of a commercial immunostimulant preparation, EcoActiva ${ }^{\text {TM }}$ as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish Shellfish Immunol. 14, 333-45.
- Cuesta A., Esteban M.A., Meseguer J. (2002). Levamisole is a potent enhancer of gilthead seabream natural cytotoxic activity. Vet. Immunol. Immunopathol. 89, 169-74.
- Dalmo R.A. \& Bøgwald J. (2008). β-glucans as conductors of immune symphonies. Fish Shellfish Immunol. 25, 384-96.
- FAO (2018). The State of World Fisheries and Aquaculture 2018 Meeting the sustainable development goals. Rome, Italy. 227pp.. Licence: CC BY-NC-SA 3.0 IGO.
- Hossain M.S., Sony N.M., Koshio S., Ishikawa M., Lieke T., Kumar V. (2021). Long term feeding effects of functional supplement 'cytidine monophosphate' on red sea bream, Pagrus major performances. Aquaculture 533, 736150 (9pp.).
- Kiron V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Sci. Technol. 173, 111-33.
- Kodama H., Hirota Y., Mukamoto M., Baba T., Azuma I. (1993). Activation of rainbow trout (Oncorhynchus mykiss) phagocytes by muramyl dipeptide. Dev. Comp. Immunol. 17, 129-40.
- Li P., Zhao J., Gatlin D.M. III (2015). Nucleotides. In: Lee C.-S., Lim C., Gatlin D. III, Webster C.D. (Eds.). Dietary Nutrients, Additives and Fish Health. John Wiley \& Sons Inc., Hoboken, N.J., U.S.A.. pp.24969.
- Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol. 20, 137-51.
- Magnadóttir B. (2010). Immunological Control of Fish Diseases. Mar. Biotechnol. 12, 361-79.
- Manning M.J. \& Nakanishi T. (1996). Cellular defenses. In: Iwana G. \& Nakanishi T. (Eds.). The Fish Immune System: Organism, Pathogen, and Environment. Academic Press, New York, N.Y., U.S.A.. pp.159205.
- Meena D.K., Das P., Kumar S., Mandal S.C., Prusty A.K., Singh S.K., Akhtar M.S., Behera B.K., Kumar K., Pal A.K., Mukherjee S.C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem. 39, 431-57.
- Neumann N.F., Stafford J.L., Barreda D., Ainsworth A.J., Belosevic M. (2001). Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 25, 807-25.
- Nya E.J. \& Austin B. (2010). Use of bacterial lipopolysaccharide as an immunostimulant for the control of Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Appl. Microbiol. 108, 686-94.
- Raa J. (2000). The use of immune-stimulants in fish and shellfish feeds. In: Cruz-Suárez L.E., Ricque-Marie D., Tapia-Salazar M., OlveraNovoa M.A., Civera-Cerecedo R. (Eds.). Avances en Nutrición Acuícola V: Memorias del V Simposium Internacional de Nutrición Acuícola. 1922 Noviembre, 2000. Mérida, Yucatán, Mexico. pp.47-56.
- Reverter M., Bontemps N., Lecchini D., Banaigs B., Sasal P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 433, 50-61.
- Rodrigues M.V., Zanuzzo F.S., Koch J.F.A., de Oliveira C.A.F., Sima P., Vetvicka V. (2020). Development of fish immunity and the role of β glucan in immune responses. Molecules 25, 5378. 33pp..
- Rombout J.H.W.M., Abelli L., Picchietti S., Scapigliati G., Kiron V. (2011). Teleost intestinal immunology. Fish Shellfish Immunol. 31, 616-26.
- Sakai M. (1999). Current research status of fish immunostimulants. Aquaculture 172, 63-92.
- Secombes C.J. (1996). The nonspecific immune system: cellular defenses. In: Iwana G. \& Nakanishi T. (Eds.). The Fish Immune System: Organism, Pathogen, and Environment. Academic Press, New York, N.Y., U.S.A.. pp.63-103.
- Segner H., Reiser S., Ruane N., Rösch R., Steinhagen D., Vehanen T. (2019). Welfare of fishes in aquaculture. FAO Fisheries and Aquaculture Circular No. 1189. Budapest, Hungary, FAO. 18pp..
- Shakya S.R. \& Labh S.N. (2014). Medicinal uses of garlic (Allium sativum) improves fish health and acts as an immunostimulant in aquaculture. Eur. J. Biotechnol. Biosci. 2, 44-7.
- Shen L.L., Stuge T.B., Zhou H., Khayat M., Barker K.S., Quiniou S.M.A., Wilson M., Bengtén E., Chinchar V.G., Clem L.M., Miller N.W. (2002). Channel catfish cytotoxic cells: a mini review. Dev. Comp. Immunol. 26, 141-9.
- Shoemaker C., Xu D.-H., LaFrentz B., LaPatra S. (2015). Overview of Fish Immune System and Infectious Diseases. In: Lee C.-S., Lim C., Gatlin D. III, and Webster C.D. (Eds.). Dietary Nutrients, Additives and Fish Health. John Wiley \& Sons Inc., Hoboken, N.J., U.S.A.. pp.124.
- Tort L. (2011). Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366-75.
- Uribe C., Folch H., Enriquez R., Moran G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina 56, 486-503.
- Vallejos-Vidal E., Reyes-López F., Teles M., MacKenzie S. (2016). The response of fish to immunostimulant diets. Fish Shellfish Immunol. 56, 34-69.
- Xue X., Woldemariam N.T., Caballero-Solares A., Umasuthan N., Fast M.D., Taylor R.G., Rise M.L., Andreassen R. (2019). Dietary immunostimulant CpG modulates microRNA biomarkers associated with immune responses in Atlantic salmon (Salmo salar). Cells 8, 1592. 22pp..
- Yin G., Jeney G., Racz T., Xu P., Jun X., Jeney Z. (2006). Effect of two Chinese herbs (Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, Oreochromis niloticus. Aquaculture 253, 39-47.
- Zapata A.G., Chiba A., Varas A. (1996). Cells and tissues of the immune system of fish. In: Iwama G. \& Nakanishi T. (Eds.). The Fish Immune System: Organism, Pathogen, and Environment. Academic Press, New York, N.Y., U.S.A.. pp.1-62.

