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NMPOAOIOZz

H Ttrapouca &ImAwMATIKA epyacia ektroviBOnke oTo [avemmoTiuio
MeAotrovvAcou oT0 TuAMWA MnxavoAdywv Mnxavikwv. H petdepacn Tou
ouykekpigévou BiBAiou Ba dleukoAuvel Tnv xpAon Tou atmmd OAOUG TOug
MNXOVOAOYOUG KOBWG Kal TTPOTITUXIOKOUG KOl HPETATITUXIOKOUG (OITNTEG TOU
TMAMATOG pnxavoAoyiag.Etriong, Bswpoupe 611 Ba OIEUKOAUVEI Kal QOITNTEG
ERASMUS T0ou @oIToUV 1l 8a @OoITAoouUV OTO TUAMO AUTO, OTO TTAQICIO TNG
KivnTikéTNTag ERASMUS, yia o1roud£ég ri/kal yia TTPaKTIK) AoKnon, Ol OTToiol
Kar Ba &leukoAuvOoUV pE TNV METAPPAON TOU OUYKEKPIYEVOU BIBAiou va
TTAPAKOAOUBNOOUV YE AvEDN TO OXETIKO UABNua oTnv ayyAik yAwooa. Autd
OKPIBWG €MOILEANE PE TNV EKTTOVNON TNG OUYKEKPIMEVNG OITTAWUATIKAG KAl
Béoaue oav oTOXO OTAV ATTOPACIiCAUE VO aoX0ANBoUuE PE TV NETAPPACN TOU
OUYKEKPIMEVOU  OUYYPAPUATOG, O@OU  €iXaPe TNV OuykatdBeon Tou
010dokovToG Kal ouyypagéa Tou BIBAiou oTnv  €AAnVIK  yAwooa,Ap.
KwoTtavtivou Maupidn. 'Evag dAAog AGyog TTou pag odriynoe otnv avaAnyn
TNG OUYKEKPIUEVNG DITTAWMATIKAG €ival TO YEYOVOS OTI OEV UTTAPXEI METAPPACN
Tou BiIBAiou oTnVv ayyAikr yAwooa.

Katd tnv didpkela TnG METAPPAONG aKOAoUBrnoaue TTIoTd TNV dIATagn
KAl Ta TTEPIEXOPEVA TOU CUYYPAMMATOG. 2TNV OpX MEAETHOQUE TIG YEVIKEG
QPXEG TOU UTTOAOYIOTIKOU TTPOYPAMMATOG, OTNV OUVEXEID E€IOAPE yIa TIG
OIETTOUCEC £CI0WOEIG TNG PEUCTOUNXAVIKNAG. ETITTpOC6ETa, €idaue TNV €mmiAuon
eCIOWOEWV TIETTEPACHEVWY  OIAPOPWY, OKOUN MEAETACAMNE TIC OIETTOUCEG
e€lowoelg TUPPWOOUG PONRG. 2TO TTEUTITO KEQPAAQIO PEAETACAPE TNV DOMN TOU
UTTOAOYIOTIKOU TTPOYPAUMOTOG, €VW OTO £€KTO KEQAAQIO WEAETHOAPE TNV
OAOKAAPWON TWV OIOPOPIKWY ELICWOEWV TwV PETABANTWY Tou teach-t kai
oupBoAiopoug Toug ot yAwooa FORTRAN. 210 TeAeutaio Ke@AAaio
QO0XOANOAKAUE PE TNV £QAPUOYI TOU UTTOAOYIOTIKOU TTPOYPAUMATOG.

TéNog, euxapioToupe Bepud Tnv Kupia Aoucutn BaolAikn yia Tnv
TTOAUTIUN BonBeia kal TNV opbr) KaBodrynon TToU POG TTPOCEPEPE, KABWG
€TTiong euxapiotoude Kail Tov Kupio Maupidn KwvoTavtivo, 0 oTT0io¢ oG
€dwoe TNV adela va peta@pacoupe To BiIBAIO Tou oTa ayyAIKdA.

BAdyxog 21épavog
Zatoe ApTEUNG

deBpoudpiog 2021
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NEPIAHWYH

H T1rapouca dImAwpATIK  epyaoia  ekivnoe oav  10éa Adyw
EVOIOPEPOVTOG TTOU UTTAPXE YIA TO CUYKEKPIUEVO HABNUA, KaBwg Kal JETA aTTO
£€pEuUvVa Pag OIATTIOTWOAUE TTWG OEV UTTAPXElI METAPPAOCN TOU CUYYPAUHATOG
oTnVv ayyAIKr) yAwooa, €101 TTaipvovtag Tnv €ykpion Tou Kuplou Maupidn
KATOANEQUE OTO OUYKEKPIPEVO BEUQ.

To ouUyypauua apxIKG TIPAYUOTEUETAI TO  QVTIKEIMEVO KAl Td
XOAPOKTNPIOTIKA TOU UTTOAOYIOTIKOU TTPOYPANUATOG TO OTIOIO €ival YPOUMEVO
yila  uoéviun diodidoTtarn, TupPwdn, eTTiTredn, QOUPTTIEOTN por  ME
avakukAogopia. H emiduon vyivetalr pe gl péEBOSO  TTETTEPOACUEVWV
dlagpopwv(hybrid) pe TIG KUpIEG ETABANTES va gival O TAXUTNTEG KAl N TTiEON.
O1 DIETTOUCEG €EI0WOEIC TNG PEUCTORNXAVIKAG KATAVEUOVTAI O€ 4 KATNYOPIEG.
Eival o1 gepIKESG DIOQPOPIKES ECIOWOEIS , OI EEICWOEIG TTETTEPACHEVWVY dIAPOPUIV
, N TENIKA €&iowon TTETEPACUEVWY DIOPOPWYV Kal N €EIOWON TTETTEPATPEVWV
OlI0QOPWV YIa TNV OpHN.

H etmiAuon €§I0WOewWV TTETTEPACHEVWV DIOPOPWYV YIVETAI PE TN XPHAON
Tou aAyopiBuou TDMA. H etmiAuon €mITUYXAVETQI PE TOV UTTOAOYIOUO KAOE
yPauung Eexwpiotd. O aAyopiBuog simple emituyxdavel Tnv €TmiAucon Twv
€CIOWOEWV TNG OPMNG  €XOVTOG eKTIUNOEI €va TTEdIO TTiEONG. 210 TEAOG KAOE
eTavaAnyng TpoadiopileTal N oUyKAIon PeEBOOdOU OTTOU CuyKpivovTal Ol
UTTOAEITTOPEVEG  TINEC KABe  e€iowong TETTEPOACPEVWY  OlOPOPWY  HE
QTTOTEAEOUA TNV ATTOQUYH TNG ATTOKAIONG. TNV €i0000 TNG UTTOAOYIOTIKNG
TEPIOXNS TNG PONG N KOAR yvwon TnG Kartdotaong Bonbdel otov KabBoplioud
Twv MeTapAnTwyv. Evw otnv €€000 Tng UTTOAOYIOTIKAG TTEPIOXNG o]
TTPOCBIOPICPOG TWV PETARANTWY AUTWYV BEV Eival TNPAVTIKOG.

2€ TTOMEG OUVOETEG POEC EVOEXETAI VA TTAPOUCIOCOOUV apIBPNTIKES
aO0TAOEIEG PE ATTOTEAECHUO TNV OTTAITNON TTPOOCBOETIKWY TEXVIKWV  yId TNV
ETTiITEUEN TNG OUYKAIONG. To TTpoypaupa TEACH-T cival éva TTpoypauua TTou
QaTTOTEAEITAI OTTO UTTOPOUTIVEC KAl ava@épeTal o€ OIodIA0TATEG OTABEPNS
KaTtaoTaong yia oTpwTtéG N TupPwdelg poéc. MapakoAoubei TIG eTTavaAqWEIS
KAl KAVEI EAEYXO TWV OTTOTEAECPATWY OivovTag OTOV XProTn MIa KAAUTEPN
avTiAnyn TnNg emTtuxiag n atrotuxiag TG utroAoyioTikAg Oladikaoiag. Ol
OIdQopEC €CICWOEIC  UETATPETTOVTAI OE TTETTEPACMEVEG KOl O PETARANTEG
oupBoAifovTal o€ yAwooa TTpoypappaTioyou. H apiBuntikn etmiAucn Twv
e€liowoewv oto TEACH vyivetar pe Tnv WPETATPOTI TOUG Of €CICWOEIG
TTETTEPACHEVWYV DIAPOPWYV UE TNV HEBODO TWV OYKWYV EAEYXOU.

MNa Tov uttoAOYIONO TG TTiEONG EQPAPUOZETAI pIa €1IOIKH TEXVIKI, ME TV
BonBeia Tng €Cicwong TNG CUVEXEIOG N oTToia dev £xel Opoug TTiEoNS AAAG pdvo
TaXUTNTAG. TNV £QAPUOYH TOU UTTOAOYIOTIKOU TTPOYPAUUATOG TO TTPWTO BrKa
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yla €va €101k TTPORANUaA gival 0 KABOPIOPOS TNG TTEPIOXNG ETTIAUCNG KAl TOU
TAEypaTog. H 1TEpIoXn €TTIAUONG TTEPIOPICETAI ATTO TO ETTITTEDO £100D0OU TOU

agova oupueTpiag kal To miTredo €6O0U.
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EIZArQrH

Ta TeAeuTaia €ikoal Xpovia, n apiOunTIk €mTiAucn TwWv TTPORANUATWY
TNG PEUCTOOUVAMIKAG €EYIVE TTOAU €AKUOTIKI Kal €vag PeyAAog apiBudg
ETTIOTAPOVWY £XEI AOXOANOEI UE TO OXETIKO BENQ.

MNa tnv emiAuon otroloudnTrote Tediou pong, eivalr TTAéov duvarr n
XPAON UTTOAOYIOTIKWY TTAKETWY, T OTTOIA, META TNV TTPOCOPUOYH TOU UTTO
e¢étaon TpoPARpaTog, divouv pia apiBunTikrl AUCN TTOU TTPOCEYYiCel TNV
Tpaypatiky. ‘Eva T1TpoBANua UTTOAOYIOTIKAG PEUCTNAG MNXAVIKAG, Of€ Mida
TTPoOTIABEIa £TTITEVENG TOU TTIO PEAAIOTIKOU duvaTOU ATTOTEAEOUATOG, TTPETTEI
Va TTANPOI OPICHEVA YEVIKA XAPAKTNPIOTIKA.

Ta Baoikd oToixeia gival Ta akoAouba:

H dnuioupyia evog TreTTepacuEVoU TTivaka onueiwy (KOUPBwv)
TOU TTEdIOU PONG, TTOU ATTOTEAOUV TO UTTOAOYIOTIKO TTAEYMA.

H peTATpOTI) TWV HEPIKWY OIAPOPIKWY EEICWOEWV OE éva
oUoTNUA TTOPOMOIWY OAYEBPIKWY EEICWOEWY  TTETTEPACHEVWIV
dlaQopwWyV, Ol OTTOIEG OUOCXETICOUV TIG TIUEG TWV AVTIOTOIXWV
METABANTWY OTOUGC KOWPBOUG TOu TTEDIOU ME TIGC TIUEG TWV
YEITOVIKWYV KOUPBWV.

H peTatpotl Twv €EI0WOEWV O KATAAANAN pop®ry yia Tnv
ETTIAUCT] TOUG PE KATTOIO AIOTTIOTN ETTAVAANTITIKY TEXVIKI).

H T1rapouciaon kai a&loAdynon Twv QATTOTEAECHATWY TNG
ETTAVOANTITIKAG O1adIKOCIAG.

Emiong, o1 6por 1OU akoAouBoluv aufdvouv Tnv agloTmoTia TNG
UTTOAOYIOTIKNG AUONG:

FevikéTnTa  gappoyng: Mia TpooTrdBeia  dnuioupyiag
UTTOAOYIOTIKOU KWOIKA WE TTEDIO eQappoyng o€ 600 To duvaTdv
TTEPICOOTEPEG TTEPITITWOEIG PONG, ME TIG AIYOTEPEG dUVATEG
aAAOYEG.

Akpipela Abong: O1 oAyePpIKEG €EICWOEIG Eival TTPOCEYYIOEIG
MEPIKWYV Olapopikwy eglowoewyv. H diagopd peTALU Twv
apIOUNTIKWY AUCEWV TOU TTPWTOU KAl TwV AVAAUTIKWY AUCEWV
Tou TeAeutaiou, OnAad TOU UTTOAOYIOTIKOU  OQAAUATOG
(trancation error), TTpéTTel va gival 600 To duvaToOVv PIKPOTEPN.
20ykAion: '‘Eva XapokTnpioTikG piag emavaAnTiTikAg pebddou
€TTIAUCONG €vOC OUCTAMUATOC TTAPOUOIWY OAYEBPIKWYV EEICWOEWV
TTou odnyei otnv opaAn Aucon Toug. Mia agiommoTtn PéBodOog
OUYKAIVEI UTTO OTTOIECONTTOTE OUVONKEG.

AUon Oikovopia: H Baoikh avaykn piag geBddou eival va gival
YPyopn Kal OIKOVOMIKY. AUTI] n avAykn yid «UTTOAOYIOTIKN



OIKovopia»  Traifel  onuavtikG  poAo  oTn  dnuioupyia
OTTOI0OOATTOTE UTTOAOYIOTIKAG HEBGDOU.

O1 TpoBAEYEIC yIa TN METAPOPA BEPUOTNTAG KAl TN KMNXAVIKA PEUCTWY
MTTOPOUV va An@Bouv pe dUO KUPIEG PEBODOUG: TNV TTEIPAMATIKN £pEUva Kal
Tov BewpnTikd uTttoAoyiopo. Ta TeAeutaia Xpovia, n ouvexng augnon Tng
XWPENTIKOTNTAG TWV UTTOAOYIOTWYV, N BeATiwWon Twv PEBOdwWV €TTiAuonNg Twv
eCliowoewv Navier-Stokes (1 Reynolds) kar n PeAtiwon Twv TUPPWAN
MOVTEAWV TTOU XPNOIYOTTOIOUVTAI VIO TOV UTTOAOYIOUO TwV TUPPWOOUG TACEWYV,
TTou gp@avifovtal oTIg e€lowoelg Reynolds, og ouvduaouod Pe Tnv avdykn yia
XOauNAOU KOOTOUG PEBODOUC oxedlaouoU, €xouv odNyACEl OTNV EKTETAMEVN
xprnon Tng  YToAoyIoTIKAG Oepuo-PeuoTikAG MnxavikAg (YTTOAOYIOTIKN
PeuoTiky Auvauiki kar Metagopd Oepuotnrag (CFDHT)) wg €va emmitTAéov
epyaAeio diegaywyng TrEIPAPATWY KaBWwG Kal TnG diadikaciag oxediaouou.

Ta TTAEOVEKTAUATO TOU BewpnTiKoU UTTOAOYIOUOU OE Oxéon ME TNV
avTioToIXN TTEIPAPATIKN £€pEUVa €ival:

e To XApunAdé KO6OTOG, TO TIO ONMUAVTIKO TTAEOVEKTAMO MIAG
UTTOAOYIOTIKAG TTPOPBAEWYNS. 2TIG TTEPIOCCOTEPEG EPAPHOYEG, TO
KOOTOG KOTAOKEUNG KOl  €KTEAEONG €VOG  UTTOAOYIOTIKOU
TIPOYPAPMATOG €ival TTOAEG POPEC XAUNAOTEPO ATTO TO KOOTOG
MIOG avTiOTOIXNG TTEIPAUATIKAG £EPEUVAG.

e H TaXUTNTA KATAOKEUNG KAl EKTEAEONG UTTOAOYIOTIKNG £PEUVAG
o€ avTiBeon UE avTioTolXn TTEIPAUATIKI £PEUVA.

e O1 mARpEIg TTANpOYOpPiEg TTOU GUANaPBAvovTal (UE TNV ETTIAUCN
evOC TTPOBAAUOTOC PE UTTOAOYIOTIKI) HEBOOO) 0€ OAOKANPN TNV
ETMQPAVEIQ TNG AUCONG TTOU POG evOIAQEPEL. 2€ aQvTiBEon MPE TO
TEipAPA, UTTAPYXOUV  €AAXIOTEG  QTTPOCITEG  UTTOAOYIOTIKEG
TEPIOXEG Kal Oev UTTAPXEl €TTiong diatapaxrf Pong atrd Ta
opyava uETpnong.

e H duvarétnta €UKOANG Tpooopoiwong oe £vav BewpnTikd
UTTOAOYIOHO TWV TTPAYUATIKWY ouvlnkwyv. Agv gival SUOKOAO yia
éva UTTOAOYIOTIKO TTPOYPAUMO VA HIMEITAI PIKPEG 1 MEYAAES
dla0TACEIG, va XeIpiCeTal XAPNAEG 11 uwnAég Bepuokpaaieg,
TOEIKEG | EUPAEKTEG ouoieg 1 va akoAouBei TTOAU ypryopes i
TTOAU apyég O1adIKATiES.

Mapd Ta TTapatTdvw TTAEOVEKTAMOTA TOU BEwpPNTIKOU UTTOAOYICHOU, BEV
TTPETTEl va UTTAPXEI UTTEPBOAIKOG evBouaiaoudg yi 'auTd Kal gival Xprioiuo va
AN@BoUV uTTOYWN KAl TA PEIOVEKTAUATA KAl Ol TTEPIOPICHOI Tou. O UTTOAOYIOUOG
ME TN XPrOon UTTOAOYIOTWYV €TTIAUEI TIG OUVETTEIEG EVOG JABNUATIKOU POVTEAOU.
H treipapartikr) €pguva, atmo Tnv GAAN TTAEUPd, TTAPATNPEI TNV TTPAYUATIKOTNTA.



Ta 6pia 10X00G evoG pabnuaTikou PJovtéAou TTEPIOPICouV T XPNOINOTNTA TOU
BewpnTikoU  uTTOAOyIOMOU. To TeAIKO ammoTéAeopa  Tou  BewpnTiKoU
utToAoyIopoU €EapTaTal TOOO ATTO TO PABNUATIKO POVTEAO OCO Kal ATTO TNV
apIBunTik) péBodo TTOU YpnoidoTrolgiTal. Mia ocwoTh TTPooTTddsia yia pia
TTPOBAEWn TIPETTEl va  €ival  évag  OUVETOG Ouvduaoudg  BewpnTikou
UTTOAOYIOHOU Kal TTEIPANOTOG. H euTTAOKA Twv U0 TTapayovTwy e¢apTdrtal aTrd
TN QUON Tou TTPOG £TTIAUCN TTPORANMATOG, TOUG OTOXOUG TNG TTPORAEWNG Kal
TOUG OIKOVOMIKOUG Kal GAAOUG TTEPIOPIOHOUG TNG KATACTAONG.
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INTRODUCTION

In the last twenty years the numerical resolution of Fluid Dynamics
Problems has become very attractive and a large number of scientists have
dealt with the relevant subject.

In order to resolve any flow field, it is now possible to use
computational packages, which, after the adaptation of the problem under
investigation, give a numerical solution that approximates the actual one. A
Computational Fluid Mechanics problem, in an effort to achieve the most
realistic possible result, must meet some certain general characteristics.

Its main elements are the following:

e The creation of a finite table of points (nodes) of the flow field, which
make up the computational grid.

e The conversion of the partial differential equations into a system of
similar algebraic finite difference equations, which correlate the values
of the respective variables at the nodes of the field with the values of
the neighboring nodes.

e The transformation of equations into a suitable form for their resolution
by some reliable iterative technique.

e The presentation and evaluation of the results of the iterative process.

Also, the following terms increase the reliability of the computational
solution:

e Generality of implementation: An attempt to create a computational
code with scope in as many flow cases as possible, with the fewest
possible changes.

e Solution Accuracy: Algebraic equations are approximations of partial
differential equations. The difference between the numerical solutions
of the former and the analytical solutions of the latter, namely the
computational error (trancation error), should be as small as possible.

e Convergence: A feature of an iterative method of resolving a system
of similar algebraic equations that leads to their smooth solution. A
reliable method converges under any conditions.

e Solution Economy: The basic need of a method is to be quick and
economical. This need for “computational economy” plays a major role
in the creation of any computational method.

Predictions about Heat Transfer and Fluid Mechanics can be obtained by
two main methods: the experimental research and the theoretical calculation.
In recent years, the continuous increase in the capacity of computers, the
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improvement of the methods for resolving the Navier-Stokes (or Reynolds)
equations and the improvement of the turbulent models used to calculate
turbulent stresses, which appear in the Reynolds equations, combined with
the need for low-cost design methods, have led to the extensive use of the
Computational Thermo-Fluid Mechanics (Computational Fluid Dynamics and
Heat Transfer (CFDHT)) as an additional tool of conducting experiments as
well as the design process.

The advantages of the theoretical calculation over the corresponding
experimental research are:

e The low cost, the most important advantage of a computational
prediction. In most applications, the cost of building and running a
computational program is many times lower than the cost of a
corresponding experimental investigation.

e The speed of building and executing a computational investigation as
opposed to a corresponding experimental investigation.

e The complete information that is captured (with the solution of a
problem by a computational method) in the whole solution surface that
we are interested in. In contrast to the experiment, there are minimal
inaccessible computational areas and there is also no flow disturbance
from the measuring instruments.

e The possibility of easy simulation in a theoretical calculation of real
conditions. It is not difficult for a computational program to emulate
small or large dimensions, to handle low or high temperatures, toxic or
flammable substances or to follow very fast or very slow processes.

Despite the above advantages of the theoretical calculation, there should
be no extreme enthusiasm about it and it is useful to take into account its
disadvantages and limitations as well. The calculation with the use of
Computers resolves the consequences of a mathematical model. The
experimental research, on the other hand, observes reality. The power limits
of a mathematical model restrain the usefulness of the theoretical calculation.
The final result of the theoretical calculation depends on both the
mathematical model and the numerical method used. A correct attempt for a
prediction should be a prudent combination of theoretical calculation and
experiment. The involvement of the two factors depends on the nature of the
problem to be solved, the objectives of the prediction and the financial and
other restrictions of the situation.
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CHAPTER 1

GENERAL PRINCIPLES OF A COMPUTATIONAL
PROGRAM

1.1 Object and Features of a Computational
Program

Chapters 1 to 7 give the key features of the general prediction method
for the transfer of momentum, mass and heat, which are integrated in a
computational code. The computational program is written for constant two-
dimensional (expandable to three-dimensional), turbulent (or laminar), flat (or
axis-symmetric), uncompressed flow with recirculation. There is a possibility
for extension in order to be applied to non-constant three-dimensional flows.
The provided program list is written for flow in a tube with abrupt expansion
(STEP geometry).

The computational code resolves the relative equations of conservation
of momentum, mass, energy and so on, with a finite difference method
(hybrid). The main hydrodynamic variables used are the speeds and the
pressure. A special procedure, the SIMPLE method (Patankar and
Spalding,1972), is used to solve the speed and pressure fields, and each
equation is resolved with an LBL resolving process, using the TDMA
algorithm.

1.2 Method Applications

In various fields the method is applied in the following fields:

e Inthe power generation field: gas turbines, reciprocating engines,
burners and nuclear reactors.

e In chemical plants: heat exchangers, blast furnaces.

e In environmental studies: pollutants prediction, disposal of thermal,
chemical and radioactive waste in the atmosphere, rivers etc.

e Inthe space field: calculation of drag and lift.

17



¢ In cooling-heating ventilation of buildings: improvement of living
conditions and physiology, prediction of the air and blood flow through

the kidneys and arteries.

1.3 Mathematical Structure of Computational Codes

The mathematical formulation structure of computational codes follows
the flow chart below.

Conservation Laws Transfer Laws Source Laws
Y = Y " Y
> e v
Differential Equations v
. |
r
Finite Difference Equations <

Y

Algorithm Solution

Y

Computer Program

Y

Equations Solution

Predictions

As shown in the flow chart, the computational codes are based on the
laws of nature, conservation (momentum, mass and energy), transfer and
sources. The laws of nature are transformed directly into finite differences,
using the analysis of the control-volume method. Tending the number of the
grid nodes into infinity, the approximation of the finite difference equations
formed can replace that of the differential equations.

In order to enable the prediction through a Computer and resolve the
finite difference equations, a resolution algorithm is necessary, which should
be properly integrated in the computer program, take advantage of its speed
and convey the physical reality.



CHAPTER 2

GOVERNING EQUATIONS OF
FLUID MECHANICS

2.1 Conservation Equations — Partial Differential Equations

In order to show how the laws of nature can be combined in a
differential equation, the momentum transfer is taken, for example. According
to Newton’s second law for the constant flow state, the sum of the momentum
(Ji) in the i direction must be equal to the net force in the same direction (Si).
The mathematical expression is:

Jiw—Jie+Tis—Jin=—-§ A

The mathematical expression includes (j) flows, which represent the
momentum transfer by both transfer and diffusion (viscosity effect). They have
as their cause the transfer laws (Newton’s law of viscosity). According to the
transfer law, in a Newtonian turbulent fluid, the total flow is equal to:

' - au
Jy=pUU — ut {T + additional terms
ox

(2.1.1)

In the (2.1.1) relation there are also additional terms (or sources) that
contribute to the momentum transfer, which arise from the “source laws” and
describe the contribution due to pressure, buoyancy forces etc. Source law:

Sy = —gx—p + S’
(2.1.2)
Replacing the laws of transfer and sources in the mathematical

expression of Newton’s second law, we obtain the differential equation for
momentum in the x- direction:
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E(QUU)'*‘@(PU-V) ax(u:axJ ay[lhay]—ax+5x

(2.1.3)
The differential equations for momentum in the other directions, as well
as for other conserved properties, are obtained in the same way.

The beauty of transfer equations in the conservation of various
properties (excluding the mass), is that they can be expressed by a general
formula, which for two-dimensional steady-state problems (constant flow), for
cylindrical coordinates is as follows:

1| & a a o
== e — === |-=|rr=||-Se=0
l'[ax (@rU(D)_'_ar (orvad) a";[1"1"6:“1 ar(r 61‘)] ®

(2.1.4)

®=U,V,k ¢ T, m,etc., I =y, e, etc. Serepresents the sources
in relation to the transfer of the ® variable. The continuity equation, or, in
other words, conservation of mass, has a special expression and will be
discussed later, after the production of the corrective pressure equation. For r
=1 and ar=0dy we go to a two-dimensional flat flow.

2.2 Finite Difference Equations

For the production of finite difference equations from differential
equations the appropriate grid and the storage positions of the variables must
be developed. The grid used in the plane r-x is a regular rectangle, with
random distances of the nodes dxpw+0xep and is represented by the
continuous lines:

. = B \ gradient
> - N B \ ® cell

A !
ey NN
Wk - PO E U - L opeey
3 N
AV
S > \VJ ® V-speed

cell

Typical clusters of U, V and gradient cells (or control volumes) are
represented by the dashed lines. Each cell surrounds the position of the
relevant variable. The variables are stored in different grid positions. The
pressure and the gradients are stored at the grid nodes, while the speeds are
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stored at the limits of the gradient cells. This storage system, known as shifted
“staggered” grid, has the advantage that the variables U, V, P are stored in
such a way that the pressure slopes leading the U and V speeds are easy to
be estimated and in addition, the speeds are stored where needed to

calculate the transferred flow. In (®) positions the gradient variables P, k, €, T,
m; are stored, in =) positions the U speed and in (M positions the V speed.

The approach using the control volume (or cell) method is similar to the
holistic method, but more related to physics. The value of some ® property
reported at the node point refers to the average value of the control volume.
The conservation law for the transfer of some expansive ® property (mass,
momentum, energy etc.), can be defined: [(the change of ® in the cell) = (the
net introduction rate of ® into the cell by diffusion) + (the production rate of ®
within the cell)]. And mathematically:

N
Q“
M) 4o,
v L

— ot [ e

w, e, S, n, represent the limits of the cells. Qithe total flow due to
transfer and diffusion, as a sum around the limits of the cells, giving a natural
perception and emphasizing on the conservation. The term So represents the
production in the volume unit in the celland ® = U, V, T, mj, k, ¢(®=1 for the
mass).A(p®)/At = 0, for steady-state flow (constant flow).

Considering, for the sake of convenience, a one-dimensional transfer
across the cell limits, the “exact” method of Spalding (1972) for solving the
western limit of the cell gives:

— g~ ——_ Surface Ew
(, Q, ry

We -4 = s 5r
. “' ns
Qu = owUGEy [fu®w + (1 - f,,) Dp] i v
e bxpw ——] P
exp(P UaOxp
fo = _M_ (. Peclet Number ) Py = MML\-M
exp(Pew) —1 w
i w + Op 'y +T
Ay = rpOrys, Ow = &__“_/.__2___@_1’ Iy = '—"_‘2“'““'l

Quis the transferable gradient @, in the sense of the average value,
obtained through the balancing coefficient (which depends on the local Peclet
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number). If the density pand the diffusion coefficient " are not stored in
uniform grids, balanced values are used to confirm the flow continuity.

In order to avoid “computationally accurate” exponential relations, a
method that uses the “piece-wise” (Patankar, 1980) linear approach is
adopted, to calculate the “exact” Qw Pewrelation (with a small loss of accuracy).
According to this method, a “central” difference method for a low |Pew| (Peclet)
number and an “upwind” difference method (asymptotic of the upwind
relation) for a large |Pew| number are used. This is why the method is called
mixed (“hybrid”) method:

O %[(1+2PEJ)¢W+(1—2P0;‘)¢},] VIO — 2 < Py <2
w —
OwUwEy | Pw Y Pey 22

Pp v Py, <-2

Qe, OnandQsarise in a similar way.
2.3 Source Term

The total production in the control volume cannot be accurately
expressed, without knowing the exact expression of the source term So.
However, we can give it a linear form:

— [ spav=bdp+c
v

b and c arise during the integration and linearization of the source term
So, and are generally functions of ®. This approach offers advantages and
ease of use in the computational program, in various flow situations.

2.4 Final Finite Difference Equation

For the case of steady-state flow by replacing the flow and production
expressions in the conservation law, we produce with the help of the
continuity the final finite difference equation:

(OLP — b)(I'p = Zicc;(b,- -+ C
Ons Uss Aesgnd @w combine diffusion transfer coefficients.
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Op = Zi, Zi ~ sum of the neighboring N, S, E, W.
aw = PpwUwEwlx, an = panUsEnf,

Og = pSUSEst’ ap = cheche

With the help of the continuity, ap expresses the sum of the combined
flow coefficients at the nodes N, S, E, W. When b=c=0, ®rrepresents the
average value of the sum of the neighboring nodes.

2.5 Introduction of Limit Conditions

The general finite difference equation is not applicable at the limits of
the calculation area. Special treatment is required in the cells next to the
limits, so that there is an advantage in both the conservation law and the flow
calculation. The following figure shows a typical cell whose western limit
coincides with a wall.

According to this arrangement, there is a connection between ®p and
®w in the general finite difference equation. The connection between ®p and
®w is interrupted, by setting the coefficientaw = 0. Also, we need to intervene
in the flow Qw. The flows Qe, QnandQs according to the figure remain
unaffected. There are various ways of intervention in Qw. Here, the treatment
of the “False” (wrong) source is adopted by defining the constants b and c
(easy in programming).

If we want to enter the limit flow Qo, we set:
Oy = O, b = O, c = Q()

If we want to enter the limit value®o, there must be:

Qu = 'y (Do — Pp)

and we set:
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aw=0, b=-da, c=awP,

If the relative limit in the calculation area is a wall, a’wmust be
estimated based on the wall functions, or by another model describing the
flow near the wall.

Many times, ® needs to have a constant value within the calculation
area (secondary infusion set within the calculation area). The “False” source
treatment is a very useful tool for these cases. We set:

b =—1v, c=vPrix

where y (= large number), e.g. 10%° and ®rix = n the desired constant
value within the calculation area.

2.6 Momentum Finite Difference Equation

The previous finite difference equation that has arisen was based on
gradient variables. The momentum finite difference equations are produced
similarly with the only exception of the control value shift, because the speeds
are also shifted. The U-equation mentioned in the cell is:

(ap — b) Up = ZiojU; + Egy, (Pw —Pp) + ¢

P e e IV |
R e R |

oy = OwUwEewfws Bew = 1p0Tns,  fw = fHybrid - Difference (Rey)

_ QwaaxPW

Re,
My

1
3 QWUW = E (QWUWJ+ QPUP)
We will refer to the pressures in the chapter of the corrective pressure

equation. The speeds at the limits of the cell, the densities etc., are calculated
by interpolation, in order to satisfy the continuity for the total flow.
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CHAPTER 3

RESOLUTION OF FINITE DIFFERENCE
EQUATIONS

3.1 Resolution of Finite Difference Equations

This chapter describes the general “Line-By-Line” (ILBL), iterative
process for resolving all finite difference equations and a special (SIMPLE)
algorithm for hydrodynamic equations.

3.2 LBL Resolution of Finite Difference Equations

using the TDMA Algorithm

In general, the Line-By-Line process is an iterative method, with initial
assumption of the solution field values and line-by-line solution improvement.

When solving equations for the points on the same line (e.g. N-S line),
the values of the neighboring lines are considered temporarily known. The
equation is then transformed for each point on the N-S line into such a form
that only three values (®p, ®nand®ds) are unknown.

' pPp = oDy + agdg + ¢’ )
' = awDyw + ap®Pe + ¢ (known ) N
W—agp P —p E —f——
a'p=ap—b S
-+ -

F 3
© temporarily known resolution
» unknown limne

The system of equations for all the points on the N-S line takes a very

simple form and the table of the non-zero coefficients is tri-diagonal. ®1 and
®i-1are generally known in applications.
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PP+ Do Py-0rP3 =3
B3P+ D3P3-a3Py =c3
'qu)j-l+qu)j‘(’«j(pj+1 =Cj
-Bi®Pi-1 +DiPi-ai P41 =cj
D=a'p, o = O, B=ag, Dy, Dy g =known.

Equations of this type are easily resolved with the TDMA algorithm (Tri-
Diagonal Matrix Algorithm), from the points j=2, to j=i, on the N-S line.

For the needs of the TDMA algorithm, the system of equations with
algebraic manipulation is converted into general iterative relations for ®jand
the coefficients Aj and C"’j. Properly handling the j-th equation we obtain:

<I‘-'j = Qj(bj +1 + R _ 4 —f—Zj

where:

The equations take the form:
Do =QrP3+RorP;+Z» (i)
P3=0Q3P4 4+ R3D>+Z3 (ii)
DPy=Q4Ps5+ RyP3+2Z4 (iii)

v v v N

D ,=Q n(bn+l+an)n-l+Zn

®1is known. Deleting ®2 from (ii) and®s from (iii) and so on, gives a
general formula for®;:

Dy = Ay 41 + Cf

where:

A]=—GI'L__, er:ﬁlcj—l'F'C»J
Dj — BjAj -1 D; — BiAj - 1

Note: 1 = 0. | =Dy

By applying the TDMA algorithm to the N-S line, Ajand C"’j from j=2 to
j=n are calculated from the iterative relations. From the general iterative
relation we take®j, starting with ®n and ending with ®2(®1, ®n+1known). By
applying the TDMA algorithm to the whole field, the calculation starts e.g. from
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the extreme N-S line. Then, the calculation is repeated along the next
neighboring N-S lines, using the recently calculated ®; values by integrating
them into C". The whole grid is scanned (scan = movement from one grid line
to another) and we may use multiple scans, in order to achieve the desired
solution. Divergences from the crossings direction (crossing = movement
along a defined grid line) and the scans are possible.

3.3 SIMPLE Algorithm

The unknown variables to be solved are the main hydrodynamic
variables U, V, P and the additional gradient variables k, €, T, mjetc. Each
unknown variable requires resolving an equation. The gradient variables
satisfy this requirement. And the speeds U, V, also satisfy this requirement
(with the momentum equations). The pressure, however, has no equation.
There is an additional equation, the continuity equation, but the pressure term
is not in it. Therefore, a special methodology is required, in order to obtain the
pressure P. The methodology used here is to resolve the momentum
equations initially, having estimated a pressure field. After obtaining the
estimated speeds U, V and, finally, the pressure field corrections, having in
agreement the speed field with the continuity equation. This resolution
process is known as SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm (Patankar and Spalding, 1972).

Initially, the field of the pressure P is assumed and the momentum
equations are solved by the LBL method and corresponding speeds U*, V*
are produced. The incorrect values of P*, U* and V* require correction P, U’,
and V":

P=P'+P, U=U+U, V=V'+V, G=G'+G

The shifted “staggered” grid system provides an advantage in the
corrections of the speeds, or the flow (G"), with the expression of G'w, G’e,
G'n, G’s as coefficients of time slopes t’, of P". We use a linearized flow
relation to obtain Gw” in terms of P":

f'w(P'p — P'y) au,,

Gy = ‘ tw= —Q 8xpw —(——,
Sxpw a(Ph — Piy)
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Glum0"—2" (o — P'p) '
W - * W P 5
: B(PW — Pp) ' b8 —|

Using the momentum equations in terms of U*, V* and P*, the
expression for G'w is finally transformed into a simple formula, with the
coefficient Dw in terms of ap and b:
au., Ecw

G'w=0"Dy (P'w—P'p), Dy=—o: = -
&(Pw—Pp) (op—b)

For uncompressed flow G™ = p*U". In the compressed flow we should
be careful when calculating the densities. If the speeds are corrected, the
mass conservation equation will be satisfied and the mass source Smis equal
to zero. Of course, at the originally assumed speeds U* and V* and therefore
G* the continuity is not generally satisfied and there is a net source mass. For
a typical control volume we have:

GE. — GWEy + G E,, — G,E,=S,,6V

The purpose here is to correct the speeds and the pressures in such a
way that the source mass is eliminated. Replacing Gw = G* + G" and so on, in
the mass conservation equation, a Poisson equation for the corrective P~
arises.

(ap — B)P'p = ZijaiP’; + Mp + ¢
where;

op = Eiai:\- Oy = pWDWEW and SO on.
Mp = GuEy — GLE, + GiEs — GIE, =

residual mass source in

relation to the assumed G*
flows.

The resolution of the corrective pressure P” with the LBL method
completes the process of obtaining the corrections U", V" and P’ required
forU*, V* and P*. At the limits of the solution fields, if there is a speed vertical
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to the limit, no pressure corrections are needed. E.g. at the western limit the
coefficient Dw must be zero and this is achieved by setting aw = 0 in the
pressure equation:

U'w = Ujmi — Ur-n.; =Dy (P'y—Pp)=0

If the limit pressure is given, e.g. Pw = Pumit, the corrective pressure
P’w is equal to zero. Then Uw and Dw are obtained in a similar way, or from
the momentum equation (e.g. by the linearization of the Bernoulli equation

[P =Pyt + e QUi \})?

27
PW - Pil"1:'. ¥ PF“"‘ = D
Uy = aPp + B, Uy = aPp

The various components of the SIMPLE algorithm previously
mentioned are now combined with the resolution of the equations of the non-
hydrodynamic variables, in order to achieve an overall combined resolution
process. The field of all the variables (U, V, P, T, k, €, and so on) is assumed.
The coefficients of the momentum equations are calculated and the improved
values U*, V* are obtained by the LBL method, using prevailing pressures:

(ap ~ D)Up = ZU; + Eqgy (Pl ~ Pp) + ¢

More than one scan may take place, but without the timeout rates of
the coefficients. At this point the momentum equations are satisfied, but not
the continuity equation. Then, the coefficients of the corrective equation P" are
calculated and this equation is resolved by the LBL method. Usually, more
than one scan is required for the corrective pressure equation without the
timeout rates of the coefficients. Next, the corrective speeds U” and V' are
calculated and P, U and V are obtained from the relations:

P=P +P, U=U"+U, V=V'+V

At this point the continuity is exactly satisfied but not the momentum
equations. In the next step the coefficients of the non-hydrodynamic equations
are calculated and the relative gradients ® are resolved by the LBL method.
The number of scans required in the same time step depends on the nature of
the problem.

Finally, a convergence test is performed, which if not successful, then
the recently obtained fields of the variables are considered assumed and the
process is repeated until final convergence.
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Then, the SIMPLE algorithm methodology for the case of the two-
dimensional constant flow for Cartesian coordinates is briefly described.

The continuity equation is:

6_@+ Jpu i dov i Jow -0
ot ox oy oz

For steady-state (constant) two-dimensional flow we have:

o0 SO
== =0, = —0
ot oz

The continuity equation becomes:

dou dov Apu Apv
—+—=0 —+ =0
ox oy Ax Ay

With integration in the control volume:

e,
_[ { .Qu_“‘@]dV:O = (Aou) AyAz + (Apv) AxAz =0
v| Ox Oy

((eu>c - (@u)w) AyAz + ((@v)n - (ev)s)AxAz =0

Using an uncorrected pressure field p*, on the one hand, the
momentum equations with the calculation of u* and v* are satisfied, but not
the continuity equation. We have:

. r * -
PSR PR actual, P - assumed, P = corrective pressure.
The speeds can be corrected through the relations:

” r - ’
u=u -+ u, v=wv —+WVv

The corrective speed equations are produced by subtracting the actual
solution from the originally assumed one:

o' =2 ou’; + Ae [p’p - p'e)

If the term Zaiu’i is set equal to zero, it indirectly gives the equation the
correct solution (the equation is valid in case of convergence).

Ae ' ’ '
u'ez_d:(pp_pe)mde(pp“]?e) n de = —
where

The corrective speed formula:
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3.4

ue=de (p’p - p’E)Ac

can also be written as:

ue = ug +de (P'P - P’E)

Replacing the actual speed in the continuity equation:

[Qc (uZ -+ u'e)—— Ow (u:v + u’w)] AYAZ +

-+ [Qn (uz o u’n)"’"’ Os (u;' + u's)] AxAz =0

Replacing the corrective speeds in terms of corrective pressures:
0= AyAz {o. [ul+de (P'p = p'o) |~ 0w ul + dy (0w — ') | +

+ AxAzZ {Qn [u; +dp (p'p — P'n)] — Qs [u: +ds (p's— P’p):l}

We come to the final expression for the corrective pressure equation:

app'p = OgpP’e + Awp'y + 0sp’s + anp'n + b
o = Q.de AyAz

aw = owdw AyAz

og = pds AxAz

an = opd, AyAz

dp = O + Qw + Og + Oy

b= (— Qeu: + Qwu::,) AyAz + ( - Qnu; -+ qu: ) AxAz

And in case there is a time limit in the continuity equation:

(or — OP) AxAy
At

The term b becomes:

_ (op - op) Axty

b At + (@Wu:, — QeuZ) AyAz + (@Su: - Qnu;) AxAz

Method Convergence
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All equations satisfy conditions for table convergence (Scarborought,
1930):
|ap_hJ£EiIai': W|thb50
During the resolution process, the convergence is determined at the
end of each repetition, based on the “residual source” criterion, which
compares the “residual values” of each finite difference equation with each
reference value Ro reference, (R, reference = a very small value).

By using a suitable under-relaxation method for an iterative process,
convergence can be improved and divergence is often avoided. The
equations that are solved are non-linear and the under-relaxation is
necessary:

NEW

DR =f POp + (1 —H TP

f = under-relaxation coefficient,

NEW . . .
Dp = current variable with under-relaxation,

D= current variable,

(I)_ OLD . . .
P = previous repetition variable.

If the mass flows do not satisfy the continuity, a situation may arise
where all gj are equal to zero. The finite difference equations take the form:

Gp,

ap = Eiai

c'!i

The solution is to add an “incorrect” (false) source, by the linearized
source method. The final finite difference equation then has as additional
constants bj and cj. The linearized source Stis :

- - OLD b
St = | Mnet | (tI)P — dp J = b, + c¢

where: Mnet = Zimiwith mw = GwEw and so on. The finite difference
equation formula to be solved becomes:

(ap - b - by) CI)p = ZijoiP; + ¢ + cf

This addition helps to stabilize the resolution process, without affecting
the final solution.
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3.5 Method Accuracy

The accuracy of the solution process, in general, is a function of the
convergence and the number of the grid nodes used. For each flow
configuration, a grid-independent solution is sought, increasing the number of
the grid lines, until no further change in the final solution is observed.

The main source of an incorrect prediction is the “incorrect” (false)
diffusion that occurs, when the Peclet number is large and the flow is lateral to
the grid (in the finite difference method, ®ris calculated as the average value
of the neighboring®)). As a solution, the grid could be placed parallel to the
flow lines or all the Peclet numbers could be reduced.
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CHAPTER 4

GOVERNING EQUATIONS FOR TURBULENT FLOW

4.1 Turbulent Model of Two Equations

This chapter presents the integration into the process of resolving a
turbulent model, to obtain a solution of the equations through average time
values of the average flow, with the help of two turbulent quantities k and &,
which are obtained from their transfer equations. According to the view of the
Reynolds average time values, the instantaneous values of the speeds and
the gradient variables are analyzed in the average values and their
fluctuations:

A

Ui=Ui+ui,(:D=(b+d)'

For steady-state flows and using Cartesian coordinates the equations
of average time values for the continuity, momentum and gradient transfer
take the expression:

3,

—(eU) =0

ax,-(@ )

0 0 —~ OP ¢ ou; dU;
—UUp=—(-puu; |- —+— it St | .
o O =3 (0% @fi+a"j[u(a"j+5xi]}+8m

0 0 — o[ od
— oU: D) = —f —~ ' —_— e
5){]' (Q J ) axj[ Ql.l]q) )+6XJ (O'q; 6XJ +S¢1
M= laminar viscosity, oo= laminar Prandtl/Schmidt number.
Unfortunately, these equations contain unknown Reynolds stresses @ "% and
ht!
gradient flows Q ujf . These turbulent diffusion flows play an important role in

determining the flow behavior, as they represent the effects at the micro-scale
level.

The adopted method for obtaining a closed equation system is a model
of “active” viscosity, in which the unknown turbulent diffusion flows are
expressed in terms based on the “transfer slope hypothesis” (Hinge, 1959), in
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which the flows are assumed to be proportional to the slopes of the average
flow properties. The constants of the proportion are piorydog,t.

— Jdu;  oU; e U b
— AL = b iy [ [ A —
@t =t (f)xj + Ix; J Q ujb Ot 5xj

Mt = turbulent viscosity,
O@.t = active Prandtl/Schmidt number.

Oo¢,is often considered to be known, while from the dimensional
analysis it is concluded thatpiis a function of the turbulent kinetic energy k and
its scattering rate €. k and € are obtained from their transfer equations, which
is why it is called turbulent model of k-& two equations:

2
k

P-t':Cp.Q?

C

k= friction coefficient, based on experimental measurements Chu=

0,09.
4.2 Equations of Average Time Values in Turbulent Flow

The equations of average time values for the continuity, momentum
and gradient transfer for two-dimensional, steady-state, turbulent axis-
symmetric (or flat, r=1) flows are given:

Continuity:

o 9 =
~ @)+ = (1eV) =0

Momentum:
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1o 3 o 1[o U\ 8 ou
: | 2% (roUU) + o VU )}=— a+;[& (ﬂ%ff?{}*— a{mmg]+su

E ) v \%
= &(IQUVHE(TQVV) = {‘{ J‘ [ }Heff 2:|+ Sv
s 0 U\ 19
u= ax Weff —~— x r or Wefr 5r
8 auU) 10 oV \4
N [“ or ]*? a [*‘e 5} e

o __B Mt
=u+ o= i e
Meff =W+ W,  Degr O + o

| =

Gradient Transfer:
1} 9 9 =19 I o
}_[5; (roUd) + ™ (rQV(D)jl—- " [BX (l'reff p J-P' 3 (I‘Feff ar }]+ Se

Here pert and lerr are the active exchange coefficients, representing the
sum of the laminar and the turbulent transfer. At high Reynolds numbers (full
turbulent flow) the effects of the molecular transfer y and I are negligible and
are omitted in the equations. The expressions Su, Sv omit the additional terms
related to non-uniform viscosity, whose effect is beginning to become
significant for significant changes of the fluid properties.

The necessary equations for the turbulent kinetic energy k and its
scattering rate €, which complete the equations of average time values for
two-dimensional, steady-state axis-symmetric flow, are:

Turbulent energy k:

1|9 9 19 [ Petr k) O [ Mem Ik -
r[ax (rQUk)+al_ (I‘QVk):I—- r[ax [r o ?}x]+ " (r o ar]]+(} Cpoe
Sx

Scattering rate of enerqy €:

~

119 ﬁ O merde), O merdeY . . e €
Se

where:
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o] @) -0 bRl
Sa=—2 [%ai(vwi’—g—]

The constants (Launder and Spalding, 1974):

Cu

Cp

C1

C2

Ok

ag

0,09

1,0

1,44

1,92

1,0

1,3

The similarity of these equation to those of the average flow is

2

gk :
S,=G - Cpps Se _CIRG* C k

demonstrated by replacing and

G represents the production of k from the average flow, through the
turbulent shear stress, and to be precise, ¢ is the scattering rate of the
viscosity of k in heat by very small turbulent vortices. The coefficients C and
the Prandtl numbers o are generally empirical functions, but they are taken as
constants for high Reynolds numbers. Schas other production terms too, the
effects of which are small, out of flows of non-uniform properties.

4.3 Limit Conditions

At the input of the computational area of the flow, the variables U, V, O,
k, €, can be determined by the good knowledge of the particular flow state
(experimental measurements) or be estimated. E.g. the scattering rate € can
be estimated by the dimensional analysis, based on the fact that the
turbulence is characterized by the energy of k and a scale of L length, which

represents the size of the turbulent vortices (e~ KM‘U-

At the output of the computational area (for large Reynolds numbers),
the identification of the variables is not important. The usual practice is to set
vertical slopes equal to zero and obtain the output speeds from the mass
balance. Near the wall the local Reynolds becomes too small and the
turbulent model is insufficient (it is designed for high Reynolds numbers).
This, in combination with the abrupt change of the variables near the wall,
makes the selection of the position of the grid nodes near the wall careful.

The average flow equations U, V, P and ® of the laminar flow are
converted for the turbulent flow, by replacing p withpes, I with Mefand
introducing some additional source terms, using source linearization. The
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equations k and € are not different from the other gradient transfer equations,
considering Sk and Scas additional source terms, which are introduced by the
source linearization method.

C.Cookas
J.VSde=bkp+c=——J"D§Mp(Wkp+G6V
t

C0e8 V Ci1epGd V
k ep
P k

| S.dv=bep+c=
v

*

P

k

* * .
BV = cell volume, X » & p = previous values.

2
Ue_Uw Vn_vs
GEZ[{—S;{;:——] +(__-W6rns ]4—}

One point we should note about the treatment of the sources Skand
Seis that b must not be negative. This provides us with solution stability and
confirms that the calculated k values never become negative.

Generally, near-wall conditions are considered to be one-dimensional
Couette flow conditions. The limit layer is considered to have a constant shear
stress (1Tw) and a constant heat flow (¢" = ¢"'w). These conditions require an
impermeable wall with zero pressure slopes or negligible in the flow direction:

Tw
dP/dx

>y

The momentum equation is then transformed into a special, simple,
dimensionless form:

.3 e YdU™
T=(M+P«t)%g" E:=[1+H] dy*
Yy or

In the area near the wall the local Reynolds number varies
considerably and the adopted approach is the dependence of the local
Reynolds number, y* , which is based on the distance y from the wall and the
friction speed Ut.

U } Tw
y+ = ,vty: U‘C = E

The area near the wall is divided into three sub-areas (Hinge, 1959). In
the viscous substrate 0 <y'< 5, where the effects of the viscosity
predominate, in the inert substrate 30 <y'< 400, where the flow is completely

: +
turbulent, but ¥ ~ T« and in the transition layer 5 <¥ < 30, where the flow is
not affected only by the viscosity but is not completely turbulent either. The
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flow separation is followed by the determination of the point, y*= 11,63 (where
the linear distribution of the speed of the viscous substrate meets the
logarithmic distribution of the inert substrate), below which the flow is
assumed to be completely viscous, while the top is completely turbulent.

y+$11,63, %<<1, 'c~1:w.:>U+=y+

For

For y' > 11,63, L:— >>1, T~ Ty, Vi~nyU, =

=U"= é Iny" + const = i In(Ey ")

U* = U/UT, k = 0,4187 von Karman constant and E is an integration
constant that depends on the size of the change in the shear stress across
the limit layer and the roughness of the wall. The value E=9,8 is valid for a
smooth wall and a constant shear stress. Mass transfer effects across the
limit layer and different pressure slopes are incorporated by modifying E.

Also, there is a great mechanical interest in predicting transfer
characteristics to the walls. The same treatment, as for the momentum
transfer, is applied to the heat transfer too. The corresponding dimensionless
equation is:

Gradient transfer (e.g. ® = T):

s = dT I r r -

q =(’F—I—[L)Cpa-)—', é}'_:[lﬁ_'_ﬁ](j—r_,_
w

Y

Constant heat flow across the limit layer is assumed.
For y+ = 11,63, I >> rt's q” —~ (‘l”w . 'Id— = ;T¢y+

. Y ¢
y" > 11,63, I'<rl, '~ gt U, N

For © Oap Opy’

O
iy T e —ii‘l Iny" + Cr (O) = 0o, [U* +P [;iﬂ

T“ = QU‘:CP. f:[‘w - T)s UQJ = C #)
Where: q"w ® 9ot tyrbulent Prandtl
number
and:
3/4
P (%] = (811
[G‘D.t] e {(C‘MJJ * I] .
(Jayatillaka, 1966).
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Co= special heat under constant pressure, k= conductivity coefficient.

As before, the Reynolds separation number is 11,63. For y*< 11,63 it is
assumed to take place with molecular activity. For y*> 11,63 the transfer is
assumed to be entirely due to turbulence. The heat flow parameter T"is a
logarithmic function of y*and, also, of a term, which with the integration
constant Cris combined with the P-function (it is valid for impermeable smooth
walls).

The wall treatment of the k and € equations is again based on the view
of a one-dimensional, constant shear stress Couette flow of a limit layer. The
adopted approach is valid only in the inert substrate, where the flow is
assumed to be completely turbulent, y*> 30, but sufficiently close to the wall,
so as the assumption of the constant shear stress to be valid (y*< 400). In this
area, the local rate of the turbulence production is balanced by the scattering
rate of €:

e shear stress in the inert substrate
3/4 . 32
e = G k
and: ny

The turbulent energy equation is transformed into a simple relation that
describes the shear stressti(tw) and the scattering rate €, within the inert
substrate.

The € equation is transformed into a formula that represents a

modification of o¢ in this area:
’ch2 KZ

Ci=Cy———5 Og = 72
o.C? and: (C2—Cp Cy

One of the most important consequences of the equilibrium view is the
final expression for the wall shear stress 1w, in terms of k and the turbulence
constants.

- oCY4 K12 5

In(Ey")

U

Tw =" QC:L/"r kl/z Ut = U\]—(._;_TT y,,n _ y\] W/6 - yo Cg“ k1/2
U’ -

Ty .V )
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Also, the relation for € with integration in the control volume (or cell),
the adjacent to the wall (by extending the equilibrium in the k equation in the
viscous substrate and the intermediate layer):

[f for y*'<11,63
3/4 , 372 - 1
_ C,f kU av 1; In(Ey") for y*>11,63

[ eav
¥ ¥ with

Now, to integrate the wall limit conditions, a tangential speed Up is
assumed, at the usual momentum balance, for a node near the wall:

Up
we — er A Yp
US .
777777777777
Oxew

For this geometry as= 0 is set. The incorporation of the correct
expression of the shear force is introduced by the source method:

4=
For the P node within the turbulent area ™ > 11,63):

_ 0C ks (Up = Uy) xbxes,

Fs = Tsaxew =
In(Ey")
where
1/4 1/2
K ; vt 5 o B ::PW yP

+
For the P node within the viscous substrate (v <1L63):

t (Up — Us) 8xey
¥p

Fs = 150%ey =

For the speeds vertical to the wall no special treatment is required.

The integration of the wall limit conditions for the gradient variables
follows the same procedure, as in the case of the momentum. The expression
as and the gradient flow Qsare zeroed by the heat balance:

=+ o
For P within the turbulent area (& > 11,63) we have:
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ocCY* ki (Tp — Ts) 8%
T*

QS = C‘i” OXew =

—T-) e —> Ay

777757777
x>

4 (@2
T = Gapt [U F P ( <
Ot

)

For P within the viscous substrate ¢v" <11.63):

. ) (Tp — Ts) 6x,
g e, =
Qs=q" 0%, oa Vo

The integration of Qsis again achieved by the source linearization
method.

The integration of the turbulent kinetic energy k requires a special

procedure. Using the balance for k we set as = 0 on the wall. The production
term G in the k-equation is transformed into a simpler form, depending on the

shear stress ™ (~tw):

2
[0 v ety
P

Where ™ Us are considered average values in the cell and:

CpeC* (k; V2 kp — ké’z) U's v

jv Cpee dV = e
1 +
U =—In(E +
where: w MR for y >1163
and: U =y for 3’+ =1L,63
The whole source Sk = G - CDCE for the balance of k is incorporated

into the code by the source method with the help of the coefficients b and c.

The wall flow, in contrast to k (which is zero), for € reaches the
maximum value (much higher than the free flow). This behavior makes it
difficult to handle as in the balance of ¢, in the cell near the wall. Here a set
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value forepis adopted (independent of y*), based on equilibrium relations.
Within the inert substrate (where the Re number is large) we have:

3/2
ep= B
L ~ k. "Yin the wall area
therefore:
P e
nyp

where: L is a turbulence scattering scale. The ¢p value is incorporated
by the introduction method of the constants b and ¢ (e.g. b = 10%°, C = £,10%0).

4.4 Instability — Accuracy — Economy

In many complex flows, numerical instabilities may occur and then
additional techniques are required, in order to achieve convergence. In simple
flows there are three main causes of instability. The incorrect definition of the
initial field may lead to instability. This can be eliminated by improving the
initial field or by using under-relaxation coefficients. A second reason in the
production of instability foci is the selection of inappropriate under-relaxation
coefficients. To correct this, the under-relaxation coefficients are reset. A third
reason is the incomplete resolution of the finite difference equations during
the repetition. The corrective pressure equation P’is the most sensitive in this
case, because in each repetition the initial field of P"is zero. Increasing the
number of application of the LBL method eliminates this instability.

Accuracy depends firstly on the degree to which the solution satisfies
the finite difference equations. This degree is reflected in the stress of the
residual sources. Secondly, on the degree to which the finite difference
equations satisfy the partial differential equations. In general, smaller grid
sizes are used to achieve a grid-independent solution. Thirdly, the conditions
applied to the limits and the limit positions may affect the accuracy of the
solution, as well. Improvement can be achieved by adjusting the conditions
and the application positions. And fourthly, a fully convergent, grid-
independgent solution, based on satisfactory limit conditions and application
positions, depends on the adequacy of the turbulent model in how well the
predictions reflect the reality compared to the experimental measurements.

Indeed, in complex flows the deficiency of the turbulent model may be
the cause of various instabilities. It is important to distinguish between
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computational errors and instability (which can be eliminated), and those
errors due to physical modeling.

The requirements of economy, computational time and storage can be
minimized with some techniques; first, by accurately identifying the initial
fields (e.g. starting from a correct previous calculation, the computational time
is significantly reduced); second, with optimal grid arrangement, concentration
of the grid nodes in areas with abrupt slopes and reduction in areas, where
the slopes are also useful for grid economy; third, by experimentally finding
and testing the under-relaxation coefficients, improving the convergence
factor; and fourth, based on a more realistic convergence criterion for complex
flows, about 1% of the residual sources (in simple flows the criterion is
maintained at 0,1%).

44



CHAPTER 5

COMPUTATIONAL PROGRAM STRUCTURE

5.1 Structure of the TEACH-T Computational Program

The TEACH-T educational program is a program for two-dimensional,
steady-state, laminar or turbulent flows in Cartesian or cylindrical coordinates.
In its normal form, it resolves for the variables U, V, P, k and ¢ (some extra
variables are easily added).

The diagram below shows its overall structure:

CONTRO

_ | carLcu

START v CALCV PROMOD
CALCP
CALCTE

INIT | <] CALCED LISOLV
l A

PROPS Y
[PRINT |5+ :] S

~_PRINT |

STOP

There are five general subroutines related to each particular variable to
solve: CONTRO, INIT, PROPS, PROMOD, LISOLV and PRINT. In addition,
there is the CALC® subroutine system. The program is generally controlled
by the main subroutine CONTRO, which performs the initial and the final
functions, while also controls the repetition. The subroutines CALC® perform
the principal calculations of the finite difference equations for each ® variable.
Modifications of the sources and the limit conditions are made in PROMOD
while PROPS calculates the fluid properties (viscosity, density, etc.). INIT
performs the initial pre-processing, PRINT gives the output solutions and
LISOLYV performs the LBL repetition. The subroutines INIT, LISOLV, PRINT
and CALC® are independent of the type of the problem. Appropriate
modifications to each particular problem are required only in CONTRO,
PROMOD and in rare cases in PROPS.
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To demonstrate the TEACH-T computational code the STEP geometry
(flow in abrupt expansion tube geometry) is obtained. The figure shows how
the coordinates are determined.

NJ
JT !
I

Y(J)I e =

1

-

W
el e e e (S

T
|

N
w
IS

— > X(I)

For cylindrical coordinates we have R(J) = Y(J), while for flat flows R(J)
= 1. The calculation area is the rectangle limited by | =2to (NI - 1)and J =2
to (NJ — 1). If desired, the calculation area can be changed. It should be noted
that the limits of the flow area (dashed lines) always coincide with the limits of
the main control volumes. The indicators (I, J) refer to the nodes whose
coordinates are X(l) and Y(J). The figure shows the “staggered” grid storage
system.

The gradient variables are stored at the main grid nodes () p > P(l,
J), P> PP(l, J), k - TE(l, J), e- ED(l, J), peri» VIS(1,J), p— DEN(I, J), while
the relative speeds are shifted in the positions (-) and (1), U - U(l, J) and V -
V(l, J). The storage positions of the variables in the figure above are within the
dashed lines. It should be noted that due to the storage way, the calculations
for gradient variables start at the point (2,2), for the speed U at (3,2) and for
the speed V at (2,3).

The finite difference equation resolution for some variable ® (= U, V, P
and so on), is obtained by setting INCAL® = “TRUE.”. If we set INCAL® =
“.FALSE”., the corresponding equation is not resolved. Similarly, INPRO
controls the calculation of the fluid properties. The indexing used to determine
the application number of the LBL method, without time-outing the
coefficients, for each variable ® is NSWP® (number of scans). Often, it takes
values from 1 to 6, depending on each ® and the flow. The under-relaxation
coefficients take values similarly to the factor URF®, which generally takes
values between 0.5 and 1.0, depending on the particular ®.
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Monitoring repetitions, checking and extracting results give the user a
better understanding of the success/failure of the computational process on a
problem. For monitoring, the total number of the performed repetitions is
stored as NITER and the absolute sum of the residual sources as RESOR®.
For the P” equation the absolute mass source is stored as RESORM. RESOR
are usually normalized. The repetition is checked so that the calculations are
terminated for three reasons: the maximum residual source SORCE is too
large after 20 repetitions (divergent solution); SORCE is smaller than the
desired value SORMAX; NITER has reached the maximum allowed number
MAXIT.

The P’ equation can be satisfied by different pressure fields. That is,
the pressure is predetermined at the position (IPREF, JPREF) and is set to
this value with all the other measured pressures at the other nodes related to
that value. Thus, if this position is within the solution area, the pressure level
is set.

In each repetition NITER, RESOR and the variables are printed in a
specified position (IMON, JMON). The tables of the variables are printed
before and after the continuation of the repetition. For printing within the
continuation of the repetition, the variable INDPRI is used. The formula of the
finite difference equations programmed is:

(ap ~ b —cp) Pp = anDy + agPs + ApPg + awDw + C + cPCDDLD
Where:
Op = AN + Og + O + Oy, cPwmaX(O, Mp)

Mpis the net outflow from the control volume. cp is used only as a trick
that ensures stability, by the use of which the coefficients of ®premain finite, in
case of a net outflow.

The symbols of the FORTRAN language are carefully chosen, so that
there is a direct relationship in their expression with their counterparts in the
finite difference equations:

ap—> AP (L), an=AN(LJ), os=AS(L)), aw=AW(Q,J)

OLD

(c+Cp@°™®) 58U, J), (b—cp)—>SPJ)

or in the corrective speed formula:

D, —» DU(LJ), Dy—DV(,J)
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The following figure gives the cell (control volume) of the storage of the
gradients (P, T, k, €, and so on), with FORTRAN variables related to the
dimensions/coordinates:

| DXPW(I)—p»| DXEP(1) |
Jt——sEw@) ——»|
V x
A IESOD g S i —— N
. DYNP(J)
1 Y
1
-+ ©) W : P . E SNS(I)
1 v
PRI e . DYPS(J)
|
R(J) s Y
Y(J)
— X() —————>]

This figure, as well as the next two, is explanatory and the user will find
in them great help in adopting TEACH-T for various problems. It should be
noted that the gradient cell limits are located in the mid-range of the main grid
nodes.

The following figure is explanatory for a typical U-speed cell:

I<———SEWU(I}——->{
— N
R |
® = w b e +> :
I 1 | I |
T St o 1
L — i
1 1 S 1
I i 1
1 1 i
| 1 ]
i<——~DXPWU(I)—>l<—‘DXEPU(I)m-—>[
XU(D) >|

XUI+1) _.;%

Let’s note that the western limit of the cell is located in the mid-range of
DXPWU(I) and similarly the eastern limit in the mid-range of DXEPU(I). The
northern and southern limits are located in the mid-range of the distances NP
and PS respectively.

The next figure shows the typical V-speed cell with FORTRAN
variables:
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e DYNPV(J)

------ e R T &

DYPSV(J)

YV()
RV(D)

RCV(])

The northern limit of the cell is located in the mid-range of DYNPV(J).
Similarly, the southern limit is located in the mid-range of DYPSV(J). The
western and eastern limits are located in the mid-range of WP and PE,
respectively.

Then, the structure and the functions of the various subroutines of the
TEACH-T program are described. In general, each subroutine is subdivided
into sections to facilitate the understanding of the entire program. The
functions of the various parts of the main subroutine CONTRO are given
below:

Section 1: The initial elements of the grid, the control parameters of the
program, the constants of the problem and some other related elements are
printed outside.

Section 2: The calculations of the grid parameters, the preparation for the
supply of the tables (through INIT) and the description of the defined limit
values, as well as the preliminary printing of the initial variables are done
here.

Section 3: Prepares and checks the repetition and gives intermediate prints
of NITER, RESOR, ®(IMON, JMON) and the distributions of ® (if NITER is an
exact multiple of INDPRI).

Section 4: The final print, the calculations of the shear stress coefficients, the
normalization of the distributions and so on, are given here.

The following table gives the general structure of all the CALC®
subroutines, except CALCP:
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¥

Section 1 Calculates the coefficients
+ across the field

i

Section 2 Mf}dlfues sources and PROMOD
limit coefficients

CONTRO I

Section 3 Assembles coefficients and
calculates residual sources

A Y

LSecmon R l Resolves equations LISOLV

Y

The input and output of each of these subroutines is CONTRO.

Section 1: Calculates the coefficients across the field, using the expressions
of the total flow. These calculations are independent of the type of the
problem.

Section 2: PROMOD is called, to modify sources and limit coefficients, in
order to capture the particular problem.

Section 3: All the coefficients and the RESOR® residual sources are
calculated from ® of the previous repetition.

Section 4: LISOLYV is called to apply the LBL method.

The CALCP subroutine is distinguished from the other CALC®
subroutines. In Section 1 it has an additional feature. The absolute mass
sources are accumulated and stored as RESORM. Residual sources for the
P -equation are not calculated, because they do not provide us with useful
information. The P equation is unlikely to take a unique form, because ai are
unlikely to become zero. Therefore, no special precautions are taken in the
introduction of “false” sources. For the CALCP subroutine there is an
additional section, Section 5, for the calculation of the pressure and speed
corrections. In the PROPS subroutine the fluid properties are calculated
(thermodynamics and transfer, e.g. e, [effetc.).

The iterative LBL method is performed in the LISOLV subroutine, which
has such an arrangement that resolves along the lines N-S with W-E scans. If
desired, LISOLV can resolve along the lines W-E with N-S scans. The most
important elements of LISOLV is the PHI(I, J) table, which contains the
calculated variables and the indicators of the position ISTART and JSTART.
The INIT subroutine calculates in Section 1 the grid coordinates, the
distances of the mid-ranges between the nodes, the cell dimensions. R(J) is
set equal to 1.0, if INDCOS = 1 (flat flow), or equal to Y(J), if INDCOS = 2
(axis-symmetric flow). In Section 2 the initial values of the dependent
variables of the tables are defined.
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The printing of the dependent variables of the tables is performed by
the PRINT subroutine. The special elements are: PHI(I, J): table to be
calculated; X(I), Y(J): coordinates of storage positions; HEAD: table
containing the order of the names of the contained variables; ISTART,
JSTART: initial values of the indicators I, J.

In general, the TEACH-T computational program is written in such a
way that it is easy to understand and many of its subroutines (except
CONTRO, PROPS and PROMOD), do not need modifications for other types
of problems.
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CHAPTER 6

CONVERSION OF DIFFERENTIAL EQUATIONS INTO
FINITE DIFFERENCES AND SYMBOLISM OF VARIABLES
IN PROGRAMMING LANGUAGE

6.1 Integration of the Differential Equations of the TEACH-T
Variables and their Symbolism in FORTRAN Language
The control volume of the dimensions dx, dy, d: of the figure is
considered:
I+ ol dz
P
Il\j y Az

A k

Py

1
—-——-—p__..._..’x

==
5.
——
&
—>

y

Let’s suppose that in the elementary volume dV a quantity expressed

by the vector Jenters

F=5i+37+1,K
As this quantity passes through the volume dV, changes and exits as:

aJ;
J; + a dx;

in the direction i. Then, for the same direction the change of the

guantity J will be:

(Change of the Ji) = &

i
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If this quantity is reduced in the input surface, then the net outflow of
this quantity for each direction separately will be:

oA
ox

dx |dy dz

oJ
ol

y — dy |dx dz
oy

ol,
oz

dz |dx dy

This leads to a total outflow from the elementary volume of the quantity

J:
o) 81, &y,
s +—== dydz <=>
ox ; oz
Outflow = [ o
8y, . -
. i =divJ
<=>Qutflow / (volume unit) = &%

Let’s also assume that this quantity is of such nature that is kept
constant. Then, the outflow of the quantity divjwill come (if it is not zero) from
some other quantity J contained in the control volume dV or/and from some
other source J within the volume dV. If the variable of Jwas made in time dt,
then the requirement to maintain this quantity is expressed by the following
differential equation:

iz((s2)) . 2
_"a‘t—-l-d]VJ:Sj (6.1.1)

where p: density of J in the volume dV. Sj:source J in the volume dV.
The above equation is the general form of the conservation equations. Any
conservation equation in physics can be transformed into this form. The
continuity equation expresses the principle of the mass conservation, when it
enters an elementary volume dV under a flow field of 1 speed:

N L dived)=0 .
ot (without mass source)

This equation in cylindrical coordinates takes the form:

19(ueQ) | 9 (u0) _
r oo oz

do 1
+'; 0

0
ERET A

In a constant 2-D flow this equation is converted into:
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u=u,
L2y 200
¢ oz where
AT
1| & o o o
T ["é"r“ (rov) + . (I’Qu)} =0 <=> —(rov) + — (row =0 (6.1.2)

The momentum equations express the momentum conservation in any

direction of space. Thus, there are three such equations that have a general
form as follows:

0 . )
2 (oup) +div (o u uy) =div(u grad u;) + S;

E(Qu‘)'
where: 8t "~ " momentum change in time.

div (@ U ui):The convection term that expresses the net momentum

outflow

from the elementary volume dV.

div(p gradui):piffusion term that expresses the momentum
redistribution,

due to viscosity forces.
Si:momentum source
i: momentum conservation direction.

In cylindrical coordinates in 2D constant flow, this equation is written as
follows:

1190 ourny+-2 ovru)— 2 (mn 2% -2 [ 2% g
r{az (Quru,)+ar(g'v1u.) P (ru 82) ar[mar}ms, (6.1.3)

In this form the momentum equation is used in the TEACH program.
The term of the sources is expressed by the following relations:

a) Momentum equation in the x-direction:

il BE) LB BY BE, 28 oD 6.1.4
ro|Vox ) Tox|M x| a2 3 VY '

b) Momentum equation in the y-direction:
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2 ~
_ow” 0P 190 ov) 10 u)l 210 g
Sv = — S T — +;-a—x Ur — —g;é—r(rdlvuu) (6.1.5)

We accepted the flow as 2D, but we kept the speed w in the term:

In fact, this happens because the flow we have is axis-symmetric, as a
result the speed of the coordinate ¢ is not only different at every point in a
plane of calculations, but is also constant in any other plane of calculations.

That is, we can imagine a plane of calculations within the cylinder in
which the speed w presents a distribution which it maintains for any other
similar plane in the combustion chamber.

The numerical resolution of the differential equations in TEACH is done
by converting them into finite difference equations (FDE) with the method of
the control volumes. According to this method, the differential equations are
completed in a fairly small control volume and are thus expressed in
difference equations. Previously, the calculation space is analyzed in small
control volumes. A typical control volume for the TEACH cylindrical
combustion chamber is shown in the following figure:
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The center of the control volume is the point P, while the neighboring
centers of the neighboring control volumes are: W, E, N, S, H, L. The
intersection points of the axes connecting these centers with P, with the
surfaces of the control volume are, respectively, w, e, n, s, h, I.
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In the TEACH program, because we consider the field as axis-
symmetric, we do not examine the points H, L. We also consider that the
control volume has an angle ¢ equal to one (¢ = 1). Thus, we can see this
volume in the plane, as shown in the following figure:

n
v /s 77 A
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The control volume which in the program is symbolized by VOL, is
equal to:

VOL =R X (RCVq) =R X RCV

based on the view of ¢ = 1. We complete the differential equations not
on surfaces dxdy, but in the volume dv, where: dv = r d¢ dr dx, although we
refer to a 2D flow and we use 2D equations. The integration of the differential
equations eventually leads to the storage of all the variables (pressure, speed
etc.) in the center of the control volume P. However, it has been proven that
this can lead to computational errors, and especially to the definition of the

term ~(9P/2%i) in the momentum eqguations. For this reason a variant of the
above method is used. The new method requires the use of different control
volumes to complete the momentum equations in relation to a basic control
volume. Thus, the speed u is calculated by completing the momentum
equation in the x (or z) direction, in a grid of control volumes shifted opposite
to this direction, i.e. to the left. Similarly, v is calculated in a downward shifted
control volume. On the contrary, the pressure and other characteristic
magnitudes of the flow, such as the density, the viscosity etc., are stored in
the basic grid of P. The figures (6.1.1) and (6.1.2) show the shifted grids for
calculating the speeds u and v by symbolizing their dimensions, according to
the TEACH program. Some dimensions of the grids may give the impression
that they are left over. This happens because the grids are located in the
middle of the distances of the nodes P, N, S, E, W. We have, however, the
option of choosing a non-uniform grid. Understanding the geometry of the
grids is very important, in order to understand the integrations of the
differential equations. In particular, attention must be paid to the
complementary grids u, v of the grids v, u, respectively, and to how at the
ends of the grids v, u speeds of a direction other than the one being

56



completed are located. Thus, in the grid of the u-speed, at its four ends,
speeds v of the peripheral grids of type v are defined and vice versa.
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Figure 6.1.1 Control volume for the speed u.
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Figure 6.1.3 Control volume for the pressure P, the densityp, the viscosity p.

The grids are calculated in the subroutine INIT, which undertakes the
zeroing of all the variables which will be calculated in the continuation of the
program and the calculation of the geometric sizes of the grids. Initially, a
check is made for the value of the indicator INDCOS which determines the
type of the coordinates to be used:

(1 Cartesian Coordinate System (CCS)
INDCOS =4

|2 Cylindrical Coordinate System (CLCS)

In case we have (CCS), the value of the spoke R(J) becomes one
since here, instead of it, we have the distance Y(J). Before we proceed,
however, we should say that the distances Y(J) and X(I) of the grid have been
calculated at the beginning of the program. The horizontal position of P is
determined by X(I) and the distance between the previous one in the grid P
and the current one is defined by DXPW(I), while its distance from the next
one is defined by DXEP(I). Therefore, if we define DXEP(I) as:

DXEP(I) = X(I+1) — X(I)
it is obvious that we will have:
DXPW(I+1) = DXEP(l)

We also set values for the grid limit positions expressed on the axis x:
(2) = first position, NI = last position. The limit values will obviously be:

DXPW(1) = 0 and DXEP(NI) = 0

The same applies to the vertical distances DYNP(J) and DYPS(J)
which become:

DYPS(J+1) = DYNP(J) where DYNP(J) = Y(J+1) — Y(J)
with limit values:
DYPS(1) =0, DYNP(NJ) =0

since we have defined on the axis y: (1) = first position, NJ = last
position.

Having determined these distances from the figure, it is obvious that:
SEW(l) = 1/2[DXEP(I) + DXPW(I)]

with limit values:
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SEW(1) = 0 and SEW(NI) =0

Likewise, for the y-direction we will now have:
SNS(J) = 1/2[DYNP(J) + DYPS(J)]

with limit values:

SNS(1) =0 and SNS(NJ) =0

Then, based on the figure (6.1.1), we calculate the grid geometry of the
speed U. The figure shows:

XU(l) = 1/2[X(1) + X(I = 1)]

In this way, we place the center P for the grid U in the middle between
the points P and W. This is very important for the calculations of the
momentum-continuity equations in the grid. Then, we calculate, as we did for
the P-grid, the distances between the successive P points of the control
volumes. Thus, it follows:

DXEP(I) = XU(l + 1) — XU(l)

DXPWU(I + 1) = DXEPU(l)

The limit values will be:

DXPWU(1) = 0 and DXPWU(2) = 0

DXEPU(1) = 0 and DXEPU(NI) =0

The following figure shows the above limit conditions:
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From the figure (6.1.1) we can calculate:
SEWU(l) = X(I) — X(I = 1) with limit value SEWU(1) =0

In the V-grid (see figure (6.1.2)), it will be valid for the spokes RV(J) or
YV(J) in CCS:

RV(J) = 1/2[R(J) + R(J — 1)]
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YV(@) = 1/2[Y(J) + (J — 1)]
with limit value YV(1) = RV(1) = 0

In this way, the center of the V-cell is placed in the middle of the
distance PS. Then, the spoke of the top line of the V-cell is calculated, which
otherwise, would not be equal to R(J) based on the following relation:

RCV(J) = 1/2[RV(J + 1) + RV(J)]
with limit values: RCV(1) = R(1) and RCV(NJ) = R(NJ)

Thus, we can now calculate the vertical distances between the
successive cells of type V, as we did for the horizontal distances in the U-cell
as follows:

DYNPV(J) = YV(J + 1) — YV(J)
DYPSV(J + 1) = DYNPV(J)

with limit values:

DYPSV(1) = 0 and DYPSV(2) = 0
DYNPV(NJ) =0

Finally, we calculate some geometric coefficients for the u and v cells
that there is no point mentioning here, since we will meet them when we need
them below in completing the differential equations.

For the calculation of u (CALCU), the momentum equation is written
again in the x-direction (or z):

1) 8 8 1[6( &) 6( b&u
r [ax ((ou) ru) + Br ((ov) TU):] - ;f:a (ru &]-F a (ru Eﬂ =S, (6.1.6)
[ 1
Convection terms Diffusion terms

Then, we complete each term in the control volume of the u grid

Convection terms:

J-J.j%‘gx‘(é?u ru) r do dxdr=£j:f:~éx‘?~(@u ru) dx dr

4 4 4
. j@ (ow) ruf; dr = f% (ouw) ru |, dr ~ j3 (ou) ru, dr

(@) (b)
60



Line 2 at the point P refers to the magnitude (w2 to be calculated. At
P, pis defined, but u is not defined. Thus, we need to get some average value
for this. Due to the field geometry we will have:

SEWU(I) Ly SEWU(I + 1)
FSEWU(®) + SEWU(I+1) ' SEWU(I) + SEWU(I + 1)

up=1u'

Let’s not forget that u are stored only at the points (P, N, S", W’). To
simplify the calculations, the program in the subroutine INIT determines the
geometric coefficient:

~ SEWU(I)
~ SEWU(I) + SEWU(I + 1)

WFE(I)

therefore:
up = u'g (1 - WFE(D)) + u'p WFE(I)
or with speed indicators
up=u(I+1,7) (1-WFE®) +u (I, J) WFE(T)

The density at P is symbolized by DEN(I,J) so the term (€w)/2 will be
equal to: WPDEN(LJ)

4
The convection speed u is none other than up. The term drls expresses
the length between the lines 3-4 and according to the shapes of the grids is
the term SNS(J). r again from the grids is RCV(J), so we can calculate the
surface:

AREAEW = SNS(J) RCV(J)

For simplification (according to the program) we set:
GE = DEN(I,J) (U(l + 1,J) (1 — WFE(l)) + U(1,J)WFE(1))
CE = AREAEW GE

as a result this term is written as follows:

Convection E= CEup =CE(U(LJ) WFE(I)+U(I+1,J) (1-WFE(I)))

where up is the convection speed. In line 1, at the point W, where the

other integral refers, things are exactly the same. The indicators are simply
d

shifted one position to the left. Thus, while the term 9%l remains AREAEW,
the density pw or DEN(I-1,J) and the speed uw is calculated as follows:
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uy, = U(I, )YWFE(I) + U(I-1, ))(1-WFE(I))
where:

SEWU(I - 1)

WEWD = SEwua) + SEWU(I — 1)

We set the coefficients:
GW = DEN(I-1,J) (U(1,9) WFW(D=U(I-1,J) (1-WFW(1)))
CW = GW AREAEW

as a result the integral is written as follows:
Convection W=CW U, =CW(U(LJ) WFW(I)+U(I-1,J) (1-WEW(I)))

where Uy is the convection speed.

J-: J’j (}% ((ov) ru) dr dx =J-T (ov) ru _[: dx =
= J’T (ov) ru_]a dx — IT (QV) ru_j3 dx

(@) (b)

a) The term (ev1y) refers to the point n". Here this term cannot be
defined at this point, since neither p nor v is stored at this point. Thus, we
must necessarily set an average value for this term. Let’s see which points
are around n’:

N, N,P, P, W, K, A, NW.

We observe that the density is stored at the points N, P, W, NW, while
the speed v at the points K, A. Therefore, the average value will be calculated
based on these points. Based on the above it is obvious that the following
expression is an acceptable average value of the quantity (pV) atn’.

[% (@NW + Qw) Vi + % (QN + QP) VA:l / 2

The speed V can only be stored at the ends of the control volume of U.
This magnitude with the program symbols is written as follows:

0,25 [(DEN(I-1, J+1) + DEN(I-1, J)) V(I-1, J+1) +

+ (DEN(I, J+1) + DEN(I,J)) V(I, J+1)] (6.1.7)
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We repeat that in the figure (6.1.1) U(1,J) is stored at the point P", while
V(1,J) at the point A, although the indicators are the same (The coordinates |,
J do not refer to the same point, when expressing the positions of different
magnitudes). In fact, we have a series of overlapping grids that each one of
them has its own coordinates I, J. In the program there are the coefficients:

GN =0.5 (@N o+ @p)v 1L JI+1)

GNW =0.5 (@NW + QW)V(I ~1,7+1)

2
The term 1 obviously becomes SEWU(I), while the spoke r at the
height of the line 4 is RV(J+1) and is directed to the speed V. Thus, we can
set:

AREAN = RV(J+1)SEWU(I)
as a result the integral becomes:
0.5(GN + GNW)AREAN U~

The term 0.5 (GN + GNW) = CN is the term of the relation (6.1.7). It
remains, therefore, to determine the speed u'n. This speed, which is the
convection speed, is defined at the points N” and P’. Because the lengths
N’'n"and P’'n’are equal, the average value of the speed u at n’can be defined
as:

14 4
, _UNtup
unm 2

=05(U(I-LJI+1)+ Uy
In this way, the integral is written as follows:
Convection N = 0.5 CN (U(L, J+1) + U(, T))

In this integral the magnitudes are the same, except that the indicators
are shifted one position downwards. Thus, the average value of the quantity

(ov) 1,

is calculated based on the point B'and is:
1 1
(ov)ly= {5 (ew+osw) V(I =11+ (es+eop) V (I, J)} / 2

so, based on the program symbols, it is valid:
GS = 0.5 (DEN(l, J-1) + DEN(l, J))V(1,9)

GSW = 0.5 (DEN(I-1, J) + DEN (I-1, J-1))V(I-1, J)
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2
The magnitude dxly is SEWU(I), while the spoke r now refers to the
line 3 and is symbolized by RV(J). Therefore, the integral is written as follows:

0.5 (GS+GSW) AREAS U’g

where: AREAS = RV(J) SEWU(l). The speed U’s is calculated similarly
to U as:

U's= % =0.5 (UL N +U (1, I-1)

We also set GS = 0.5(GS+GSW). Thus, the integral finally takes the
form:

Convection S = 0.5 CS(U(I, J)+U(I, J-1))
Diffusion terms:

IH [ru—]rdmdxdr—f f 2§x[rp%dedr—

4

J p.—szr Iru&jldr

au}
r— P2
[ refers to the point P. There, the viscosity is defined as pp =

3
VIS(1,J). The spoke r is expressed by the magnitude RCV(J), while dr], by
the length SNS(J). It remains to calculate the term (8u/8%) 1 is stored at the
nearby points P and E and therefore it can be written as:
“am_J _Ug-Up UJA+1L,1)-U(1J)
&2 Axpp DXEPU (1)

Setting AREAEW = SNS(J) RCV(J) and DE = (VIS(Il, J) AREAEW)/
DXEPU(I) the integral takes the form:

Diffusion E = DE(U(I+1, J) - U(L, J))
We refer to the point W in a similar way, so we have:
e = VIS(I-1,J),  AREAEW= RCV(J) SNS(J)

2u Up-Uw UELH-UIA-1D
ox~ 17 Axpwr DXPWU (I)

We name DW = (VIS(I-1, J)AREAEW) /DXPWU(I) and it follows:
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Diffusion W = DW(U(L, J) - U(I-1, J))

_[_[2 [ ]dx dr _jz [ru%l;—}ﬁdx=
—j'zm Q) dx— jzm , dx

(a) (b)

T
The magnitude : 81'J4 refers to the point n". Here, however, we cannot
define the viscosity. So we get an average value for it with the help of the
surrounding points N, NW, W, P. Thus, we will have:

Wn =025 (up + N + new + piw)
and with the program symbols:

VISN = 0.25 (VIS(I,)+VIS(l, J+1)+VIS(I-1, J)+VIS(I-1, J+1))

The term:
_G_u_J _Un-Up UGLI+H-ULI)
or 4 Amnp DYNP (J)
dx 2
The term = SEWU(I) and r in the position where the above

magnitudes are calculated is RV(J+1). We set:

AREAN-RV(J+1) SEWU(I), DN = (VISN AREAN)/DYNP(I)

so the integral becomes: Diffusion = DN(L J+1) - U(L,J)).

The magnitudes are calculated similarly to the previous integral with
the difference that they now refer to the point s". Thus, we will have:

AREAS = RV(J) SEWU(l)

Up-Us ULDN-ULI-1)
Arpg DYPS (J)

du
o

We set:

VISS = g = o.zs(up + s + P + uw):
= 0.25 (VIS(L, J) + VIS(I, J-1) + VIS(I-1, J-1) + VIS(I-1, J))

we find the average value of y at B". Finally, we set:
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DS = VISS AREAS/DYPS(J)

as a result the integral becomes:
Diffusion S = DS (U(L, J)-U(I, J-1))

Source Terms:

According to the equation (6.1.4) the source terms for the momentum
equation in this direction are:

1o ov),1a( o) o 28 .
x5 el -t e (div) (6.18)

A different method is followed to convert these terms into difference
equations. Because these terms express sources within the control volume,
they will also have a constant value inside it always in relation to its
dimensions. Thus, we will convert the equations into FDE and then we will
multiply the result by the control volume. Within this volume the density is kept
constant at all times, since the flow is constant, resulting in divu = 0. Thus, the
last term of (6.1.8) leaves. We can, therefore, have:

6P Pp—Pw Pw-Pp PI-1,))-PQ1J)

oz  AXPW T SEWU(I)  SEWU(I)

The control volume is:
VOL = RCV(J) SEWU(I) SNS(J)
Thus, we have:

(P(I-1,J) - P(L, J))/SEWU(I) RCV(J) SEWU(I) SNS(J) =
= (P(I-1, J) - P(L, J))/SEWU(I) SEWU(T) RCV(J) SNS(J) =
= [P(I-1, J) - P(I, J)] AREAEW.

In the program DU(I,J) = AREAEW is set so this term is written as:
DU ,D[P(I-1, J) - P(I, 1)].

24 _i a_V"J
1o av_1™M oMo
?ar I'IJ- oz | r Armn'S’
v, av

The term &z~™ or &x~™ is written:

oV, Va-Vk VLI+)-VI-1LI+1)
T MKA SEWU(I)
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and the other takes the form:

8V, Va-Vu_ VLI)-V(I-1J)
axJS’ ~ AxAM SEWU(I)

These terms are described as DVDXN and DVDXS, respectively. Thus,
finally we can have:

1/t [DVDXN |, - DVDXS ryt |,/ DVNPV(J) =
= 1/RCV(J) (DVDXN RV(J+1) VISN - DVDXS RV(J) VISS)DYNPV(J)

This term is called SORCE2.

TRy
li(méﬂml Por o

Tr SEWU()

Here r remain constant so they leave, while 6u/0x are:

auJ U -Up UJA+1L,NH-UdJ)
axP ArE'P DXEPU(I)

which is called DUDXE.

u, Up-Uw UQLH-UI-L)
axJW_ AXP'W' DXPWU (I)

which is called DUDXW. Thus, we will have:

SORCE2 = (VIS(L, J) DUDXE - VIS(I-1, J) DUDXW) / SEWU(I)

Therefore, we have source terms:

Source = DU(L, J) (P(I-1, J)- P(LJ))) + SORCE1 VOL + SORCE2 VOL

Composing the equations for CALCU, it follows that:
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[Convection N - Convenction S] + [Convection E - Convection W] -
- [Diffusion N - Diffusion ] - [Diffusion E - Diffusion W]= Source -

— CE(U(L J)WFE(D) + U(I+1, J)(1 - WFE(T))) - CW(U(LI)WFW(I) + U(I-1,
I)(L- WEW(D)+ 0,5 CN(U(L, J+1) +U(1, 1) - 0.5 CS(U(L,J) + UL, J-1)) - DE(U(I
+ 1) - U(LJ)) + DW(U(L J) - U(I-1, J)) - DN(U(L J + 1) - U(LJ)) + DS(U(L J)
-U(L, J-1)) = DU(L J)(P(I-1,J) - P(L, J)) + SORCE1VOL + SORCE2 VOL

- V(I, J)[CEWFE(I) - CWWFW(I) + 0.5 CN - 0.5 CS + DE + DW + DN +
DS] = U[(I- 1) [CW(1 - WFW(I)) + DW] + U(I + 1,J) [DE - CE (1 -WFW(I)] +
UIL J-1)] [0.5 CS + DS] + U(L, J+1)[DN -0.5CN] + DU(L, J)(P(I-1, J) - B(L, J))
+ SORCE1 VOL + SORCE2 VOL

we set:

AW = CW(1 - WFW(I)) + DW
AE = DE - CE(1 - WFE(I))

AS = 0.5CS + DS

AN = DN - 0.5CN

Ap = CEWFE(I) - CWWFW(I) + 0.5CN + DE - 0.5CS + DW + DN + DS

Calculation of V(CALCV):

1[a d 1([o( av) o( av
= l:ax(gurV) + B (QVI'V):, = [5 [rp. EJ— o (ru Eﬂ =Sy (6.1.9)
(Dconvection terms (INdiffusion terms

Then, we complete each term separately, following the logic of CALCU.

Convection terms

IH G % % (QurV) dx rdg dr = J': (ourV) Jf dr =
_[ : ourV], dr— I: ourV |, dr

(@) (b)

a) On line 2, at the point e’, the value of the convection magnitude (pu)
will be calculated as the average value at the surrounding points. The density
p is stored at the points P, E, S and SE, while the speed u at the points K, A
and therefore we can write:
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(ewp=[12(0se +0) UI+ LI -D) +1/2 (P, + P) U (1 +1, 1)}/2
(Ua) (Ux)

The term drf3 ,while on this line, r = RV(J), so we can set:

AREAEW = SNSV(J) RV(J)

So finally with the program symbols we can write:

GE = 0.5 (DEN(I, J) + DEN(I+1, )U(I+1, I))
GSE = 0.5(DEN(I+1, J-1) + DEN(L, J-1))U(I+1, J-1)

Because the points A, K were placed in the middle of the lines WP and
PE respectively, the speed V at e’is defined as follows:

Vo = (VE + vpf)/z +0.5(VA + 1, 1) + V(L, 1)

Thus, finally the integral takes the form:

Convection E = 0.5CE (V(I+1,7J) + V(1, 1))

where CE = 0.5 (CE + GSW) AREAEW

The calculation for this term is similar, except that the indicator |
becomes I-1. Thus, we will have:

GW = 0.5(DEN(I, )+ DEN(I-1, J))U(L, J)
GSW = 0.5(DEN(I-1, J-1)+DEN(I, J-1)) U, J-1)
CW = 0.5(GW+GSW)AREAEW

The speed V at W will be equal to:
Vi = (VW, + vpr}/z =0.5(V(IL N+ V(I-1,1)

and:
Convection W = 0.5 CW(V(, I)+V{I-1, )

4 2
J'Sjj % (V) rV) dx dr = _[1 ((eV)rVv) |3 dx =

(@) (b)

= V)1V, dx — V|, dx
J'z(@ )tV ], dx fj(@v)r 13 We refer to the point P,

where p is defined, so it becomes:

op = DEN(L, J)
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On the contrary, V is not defined and it will take an average value
between the points P" and N" at which it is also defined: due to the grid
geometry it will be valid:

Vp(SNSV(J) + SNSV(J + 1)) = V(I, J) (SNSV(J + 1)) + V(I, T + 1)(SNSV(J))
d d

V'p V'n

— Vp = V(LJ)SNSV(I+1)/(SNSV(J+1)+SNSV(J)) +
V(LJ+1)SNSV(J)/(SNSV(J+1)+SNSV(J))

In the subroutine INIT the geometric coefficient has been calculated:
WEFN(J) = SNSV(J + 1)/(SNSV(J) + SNSV(J+1))

so we can write Vp in the following way:

Ve = V(LI + 1)(1 — WEN(Q)) + V(LI)WFN(J)

2
dx ], = SEW(I) while r at this point is R(J), so we immediately define the
surface as follows:

AREAN = R(J) SEW(l)

Then we set GN = VP DEN(I,J) and

CN = GN AREAN

The convection speed V is also expressed by the equation:
Vp=V(LJ + 1)(1 —= WFNQ)) + V(L))WEN()

as aresult it is defined as:

Convection N = CN(V(LJ+1) (1-WFN(J))+ V(L) WEN(J))

This term refers to the line 3 at the point S and is thus it is the same as
the previous one by modifying J by one (J-1). Thus, we can have:

PS = DEN(I, J-1)

Here r is R(J-1), therefore the surface is equal to:
AREAS = (R(J-1) SEW(I)

The speed at S is written as follows:

Vs = VLIO)WFS)+V(1,J-1)(1-WFS())

where:
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WES(J) = SNSVI-D/ASNSWJ) + SNSV(J-1))

and is defined in the subroutine INIT.

We set:

GS = DEN(LJ-1)Vs and CS=GS AREAS

The convection speed V is the same as that expressed by the
equation:

Vs = V(LHWESJ) + V(LI - D = WESU)) 5 thus the integral is

written as:

Convection S=CS(V(LJ) WES(J)+V(LJ-1) (1-WEFS(])))

Diffusion terms:

o
_”J. T@x[ru )rdcpdxdrm Jiax( dedr
oV * v
= rp.——-—]zdr Jruajldr

(@) (b)

4
On line 2, at the point e”, r = RV(J), the term 9tz = SNSV(J), while the
viscosity will be calculated as the average value of the surrounding values,
since it is not stored at e’, but at P, E, SE, S. Thus, it arises:

], = VISE = 0.25(VIS(LJ) + VIS(I+1,J) + VIS(LI-1) + VIS(I+1,]-1))

We set AREAEW = RV(J) SNSV(J)

oV
The derivative &x 2 is calculated as follows:

v, oV, _Ve-Ve VA+1.DH-VALI
2 ox e Axgp DXEP(D)

ox
Setting:
DE = VISE AREAEW/DXEP(I)

the integral will take the form:

Diffusion E = DE(V(I+1,J) - V(L))
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On line 1, at the point w’, the calculation is the same as the position
where I, I-1.

u,, = VISW = 0.25(VIS(LJ) + VIS(LJ-1) + VIS(I-1,J) + VIS(I-1,J-1))
AREAEW = R(J) SNSV(J)

ov
The term éx ! takes the form:

a_vj _ Vp — Vyr _V@LH-va-1,7)
x~Y  Axpw DXPW(I)

Thus, we set:
DW = VISW AREAEW/DXPW(I)

and the integral is written as follows:

Diffusion W = DW (V(1,J) -V(I-1,J))

42 5 av v
| R — |dx d —_| ) o
Ll (ru J r l[rp 53 dx

"2 oV "2 oV
= = |, dx — i
1 T - |4 1 I |5 dx

On line 4, at the point P the viscosity p is stored at P, so we set pyp =
VIS(1,d), while the spoke r = R(J) and:

dx [, = SEW(D)

av
The term or 4 is written as follows:

av oV, _VN—Vp V@I+1)-VQ@I)

x4 ax P~ Amvp DYNPV(J)

We set:

AREAN = R(J)*SEW(I)

and it results in:

DN = VIS(I, J) AREAEW/DYNPV(J)
Thus, the integral takes the form:

Diffusion N = DN(V(LT+1) - V(LJ))
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On line 3 at the point S the calculation is the same as before, except

that the indicator J becomes J-1.

Thus, it will be valid:

N Vp=Vy VLI -V(LI-1)
- -

or Arpyg DYPSV(J)
and
ulg=VIS(, J-1) r = R(J-1)

AREAS = R(J-1) SEW(I)
DS = VIS(LJ-1) AREAS)/DYPSV(J)

as a result the integral is written as follows:
Diffusion S = DS (V(1,J) - V(1,J-1)

Source terms:

According to the equation (6.1.5), the following terms are calculated:

ow’ 0P 1fof oV 10o( ou
r r rar“'ar I'Gxuﬁr
2

1/2(Pp + Pg) [1/2(wP + ws)]
RV(J)

= [0.5(DEN(LJ) + DEN(LJ-1))0.25(W(L,J) + W(LJ-1))’)/RV(J) =
= [0.125(DEN(LJ) + DEN(L, J-1))(W(LJ) + W(I, J-1))’J/RV()

This result is multiplied by:

VOL = RV(J) SEW(I) SNSV(J)

_op_oP  _ Pp—Ps Ps—Pp
o or'P Arps Arps
P(L,J-1) — P(LT)
SNSV(D)

when multiplied by the volume VOL, it will be:
= -1)-P V(J) RV(]) SEW V(]) =

because we have set:
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AREAN-R(J) SEW(I)

and:

AREAS = R(J-1) SEW(I)

the magnitude:

0.5(AREAN+AREAS) = 0.5SEW(I)(R(J)+RJ+1)) =
= SEW(I) [(R(J)+R(@J-1))/2] = RV(J) SEW(I)

is set as:

DV(L]) = 0.5(AREAN+AREAS)

Thus, we finally have:

-1) - Vv

Then:

or

1o av) 1 e (Par)s
ror|™ P P Arpg

RCV(J)VIS(LJ) %‘IP -RCV(J - 1)VIS(I,J - 1) %Js

RV() SNSV(Q)

oV
And the terms 2r will be:

V., Vn—Vp VQAJI+1)-VQED)

= = = DVDYN
or I Arnpr DYNPV()

v, Vp—Vg VAI-VAI-1)

- = =DVDYS
or s~ Arps DYPSV(QJ)

Thus, we have:

SORCE2 = [(VIS(LJ)RCV(J)DVDYN -
- VIS(LJ-1)RCV(J-1)DVDYS)] /[RV(J) SNSV(7)]

The term:
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valid:

"EP AXW’E'

ou ou
VISE — | , — VIW —
ISE — 1. or Lo

DXEPU(I)

au
where the terms &r are equal to:

_@_U_J _uk-ua _U@+1D-UA+LI-1)  opon
ore Arga SNSV()

Qu_J _Ua~um _UEND-UAI-1 _ oo

or v Aram SNSV(J)

Thus, this term takes the form:

SORCEI1 = [VISE DUDYE - VISW DUDYW]/DXEPU(I)

If we name the first term we calculated (with W) SORCEW, it will be

Source = SORCEW VOL+ SORCE!L VOL +
+ SORCE2 VOL + (P(1, J-1)-P(1, 1)) DV(L, J)

We finally have:

[Convection N - Convection S] + [Convection E - Convection W] -
- [Diffusion N-Diffusion S] - [Diffusion E-Diffusion W] = Source

and by replacing their equivalents:

0.5CE(V(I+1,])+ V(L)) - 0.5CW(V(LJ) + V(I-1I)) +

+ CN(V(LI+1)(1-WEN(J)) + V(LI)WEN()) - CS(V(LI)WFS(J) +

+V(LJ-1)(1-WFS(J)))-DE(V(I+1,J)-V(L,J)) + DW(U(LJ)-
-U(I-1,7))-DN(V(LI +1)-V(LY)) + DS(V(LJ)-V(LJ-1)) = Source =

= V(LJ)[CNWFENJ)-CSWFS(J)+DE+DW + DN+DS-0.5CE-0.5CW]=

=V(1+1,J)[-0.5CE+DE]+V(I-1,7)[0.5CW +DW]+ V(L] +1)[DN-CN
(1 - WEN(J))]+(1,J-1)[DS+CS(1-WFS(J))] +Source
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and finally there is the requirement for the production of the
discretization equation:

AE=DE-0.5CE
AW=DW+0.5CW

AN=DEN-CN(1-WEN(J))

AS= DS+CS(1-WES(J))

AP=CNWEN(J)-CS*WFS(J)+DE +DW+DN+DS-0.5CE-0.5CW

Calculation of the pressure P (CALCP)

There is no differential equation for calculating the pressure. For this
reason, a special technique is applied. The momentum equations, the source

terms, also contain the pressure terms of the formula (-OP/0x;).

When these terms were expressed with the help of the finite
differences, terms of the formula (Pa — Pb) appeared in the calculations, which
cannot be calculated, since the pressure is not known. In general, the
momentum equations require the knowledge of the pressure distribution. So,
we assume that the pressure distribution is known and we symbolize it by P*.
It is declared in the subroutine INIT and is set equal to zero for each point of
the grid -P. Then, however, u and v that are calculated are incorrect since the

terms(aP/ axi)are calculated incorrectly. At this point the continuity equation
comes to our aid, which has no pressure terms, but only speed terms. So, we
should somehow correct the speeds u, v so that they verify the continuity
equation. This is achieved in the following way:

If we assume that the corrections of u, v, P, are symbolized as u’, v,
P’. Then, it is valid:

P=P +P
»> ']
u=u +u
E 3
v=v +V Actual values of P, u, v.

In fact, all the previous calculations refer to the magnitudes p*, u*, v*.

All the momentum equations can be presented in the following general
form:

Qellg = Zitieuj + b + (P?» ~ PE)Ae (6.1.10)

This equation, if written for the actual values of the speeds and
pressures, will take the form:

Oelle = Z;iell; + b + (PP - PE)AC (6.1.11)
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If we do the operation (6.1.11) — (6.1.10), we will get:
Ol = Zi0ielt; + (P’P - P,E)Ae

The term Zi%eWi, after many repetitions, will become very small, since
eventually the speed corrections will be close to zero, therefore we can
neglect it. Then, we will have:

Al = (P’p - P’E)Ae

To each point P two grids of type U and V correspond, as shown in the
following figure. Thus, with the help of this relation we can calculate the
corrections of all the speeds of the grid P.

Vi

o 2,
i

Figure 6.1.4 Grids of type U, V at the point P.
V' =— (P’N - P'p) Ay — V), =—Ax/a, (P‘N - P’p)
o V's=— (P'p - P’S) Ag— Vig= — AS/QS(P'p - P’S)
Oty = — (P’p - P'w) Ay = t'w=—A,/ /04 (P'p - P'W)
Oell'e = — (P'E - P’p)AE = U= - Ap/d, (P’E - P'P)

The terms Ai/ai have been calculated in CALCU and CALCV. In

particular, in each calculation of the term (OP/0xi) we had also calculated an
area term (Ai) that we had named DU for CALCU and DV for CALCV. At the
end of the subroutines the transformation takes place:

DU = DU/AP, DV = DV/AP

The terms AP are ai of the relations so they are written:
Va=DV(,J+1) (P'p—Pn)

V's=DV(, J) (P's — P'p)

u'y = DU, J) (P'w — P'p)

u'e.=DUJ+1,J) (P'p—PE)
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The terms DU and DV are defined in the grids u and v, respectively, so
the coordinates I, J, correspond to these grids. Setting indicators also in the
pressures, based of course on the —P grid and symbolizing the corrections P
according to the program as PP we will have:

V'y=DV(1, J + 1) (PP(, T) — PP(I, J + 1)) (6.1.12)
V' =DV(, J) (PP(1, J — 1) — PP(L, J)) (6.1.13)
u'y, = DU, J(PP(I — 1, J) — PP(L, J)) (6.1.14)
u'e=DU(I + 1, (PP, J) - PP(1 + 1, 1)) (6.1.15)

In this way we managed to connect the pressure corrections with the
speed corrections. To also calculate the speed corrections, we would need 2
equations. It is therefore advantageous to simply calculate the pressure
corrections and through them to calculate the speed corrections with the help
of the relations (6.1.12) to (6.1.15). It remains, therefore, to find a relation that
connects the speeds between them. This relation will be given to us by the
continuity equation. We write this equation once again:

%[g (roV) + é (rgu)} =0 (6.1.16)

Now we complete it in the control volume of P and we will have:

”J‘vp%[g (ro V) +§; (rQu)} rde dxdr=0 =

1} A E (reV) +§; (r@u)} dx dr=0=
.”%(TQV) dXdr+”§;(rQu) dxdr=0=
I vy ax+ [ ow [ e (6.1.17)

We will now analyze each term separately, having previously placed
u=u*+u gnd v=v*+v.

[ @ov) [ dx+ [ @ouy [ =~ [] (rov") . dx + J'n ou") [ dr} (6.1.18)
(1) (11)
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Section (1) is a term which can be characterized as the source of the
error of the correction calculations. Section (I) gives us the corrections.
Because the only things that change in the previous relation are u, v, we will
make a more general calculation with the help of the equation (6.1.17). This
term is written as follows:

[ oV dx- [ (rov), dx

and based on what we have done so far, it is converted into FDE as
follows:

[% (en +Qp) Tn Vi Axew] - [rs 1 (er+09) Vs Axaw} -

=[0.5 (DEN(, T + 1) + DEN(I, 1)) RV({J + 1) SEW(I) Vi |~

DENN AREAN
—[0.5(DEN(, J) + DEN(I, J — 1)) RV(HSEW() Vg | =
DENS AREAS

=DENN AREAN V,-DENS AREAS V;

Constant Constant (6.1.19)

The second term is written as follows:
1 n
= J. (rou), dr —I (rou),, dr
5 5
and based on the analysis we have determined we will have:

1
[% (QP ¥ QE) Te Ue Arns} it [5 (QW + QP) Iy Uy Arns} =

0.5 (DEN(I, J) + DEN(I + 1, J) RCV(J) u, SNSQJ) |-

DENE AREAEW
o |:0.5(DEN\(I,J)/+DEN(I -1.D) RCV\(J)u/wSNS(J)J =
DENW AREAEW
= DENE AREAEW u.- DENW AREAEW u, (6.1.20)

We can now determine the source term and the corrective section:

Source term:
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From the equation (6.1.19), setting the speed V of the grid -V, we will
get:

= DENN AREAN V(I,J+1) - DENS AREAS V(I,J-1) = CN-CS (6.1.21)
We do the same for the equation (6.1.20) and we have:

= DENE AREAEW U(I+1,J) - DENW AREAEW U(1,J)=CE - CW (6.1.22)

Correction term:

In (6.1.18) we set the terms of the corrective speeds as calculated in
the equations (6.1.12-6.1.15) and we get:
= DENN AREAN DV (I, J+1) (PP(LJ) - PP(1+1, J)) -
/

AN(LY)
- DENS AREAS DV(1,J) (PP(1,J-1) - PP(1,J) =
AS(LT)
= AN(LJ) (PP(LJ) - PP(I1+1, J)) - AS(LJ) (PP(1,J-1) - PP(1,J))

In the equation (6.1.20) the corrective terms of the speeds are replaced
and it follows:

= DENF;’A’EW DU+ 1.3) (PP(LJ) - PP(I+1,1)) -
N
AEY)
- DENW AREAW DU(,J) (PP(I-1,7) - PP(1LY) =
\——__-J_____.———‘_"
AW

= AFE(LY) (PP(LY) - PP(I+1,T)) - AW(Y) (PPI-1,J) - PP(LT))
Thus, if we compose all these terms, we will have:

AP(LJ) PP(1,J) = AN(LJ) PP(I+1,J) + AS(LJ) PP(L)-1) +
+ AW(LJ) PP(I-1,]) + AE(LJ) PP(I+1,J) - (CN - CS + CE - CW)

where;
AP(I,J) = AN(I,J) + AS(I,J) + AW(I,J) + AE(I,J)

Thus, we came up with a form similar to the one in which we have
brought the other equations, so that it can be solved by the TDMA method, in
the same subroutine (LISOLV). After the subroutine CALCP calculates the
corrections PP(1,J), it finally corrects the speed values. According to (6.1.12-
6.1.13) for the speed V, we will write:
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V(L,J) = V(LJ) + DV(LJ) (PP(L,J-1) - PP(LJ))
\/
v v
According to (6.1.14-6.1.15) the speed V will be equal to:
U@ = U(LY) + DU(LY) (PP(I-1,J) - PP(LY))
LT

The pressure will be calculated with the help of the corrective factor
PP(1,J) not linearly, but with the help of the under-relaxation coefficient URFP.
To do this, we also need a reference pressure. This is called PPREF and
according to the program it expresses the pressure correction at the point
(IPREF, JPREF) = (NJM1,2) where NJM1 = NJ-1 with NJ the end of the y-
direction of the calculation grid. In this way the correct (corrected) pressure
will be equal to:

P(LJ) = P (1)) +URFP (Pl;(I,J) - Pll)REF)
I

p* P P'(IPREF , JPREF)

Once this is done, the corrections PP(l,J) become zero and the
program returns to its main part.

Calculation of the speed W (CALCW):

We will now write the momentum equation in the direction ¢, where the
speed is w:

div (p U w) — div (u grad w) = S;

In cylindrical coordinates this becomes:

1| o 2] 1[0 ow) @& ow

'; l:?a—r— (ro Vw) + ’a—x (I‘Q uw):l — ? l:gr‘ (ru E]-F a Kru g]:l ='8;
(1) (2

(1) Convection terms

(2) Diffusion terms

Convection terms:

"“Uv %[% (ro VW)]drdxrdqa=HA %(rg Vw) dr dx

P
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The calculation will be done on the grid of the point P. If the flow was
3D (net), then it would be calculated in a shifted grid in the ¢-direction. The
projection of this hypothetical grid on the plane gives us the P-grid:

[ o v ax=] (o Vwyndx- [ (ro v, dx

(@) (b)

a) This term wants the density at the point n, where it is not stored.
Thus, we get its average value between the points N, P, where it is stored:

o, =22~ 0.5 (DEN(L, J + 1) + DEN(, J))

At n, the speed V is defined as V(l,J+1). Thus, it is valid:
GN = 0.5(DEN(I, J+1) + DEN(L, J)) V(I, ] +1)
w will be equal to:

W = [wN + w@/z = 0.5(W(I, J + 1) + W(L, 1))

The term

dx |, = SEW()

and

r=RV({J+1)

since it concerns the speed V at n.

Thus, we have the term:

= GN w, SEW(I) RV(J+1)
\/
AREAN

We set:

CN = GN AREAN
and the integral takes the form:

Convection N = 0.5 CN (W(LJ) + W(LI+1))

b) For this term the same are repeated, but with the indicator J-1 in the

place of J:
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GS = 0.5(DEN(LJ) + DEN(I,J-1)) V(L))
Surface:

AREAS = RV(J) SEW(I)

Speed:

wg = 0.5(W(L, J) + W(L, J — 1))

setting:

CS = GS AREAS

we will get the integral:
Convection S = 0.5 CS (W(LJ) + W(LJ-1))

For the second convection term it is valid:
”é (ro uw) dx dr = J'n (ro uw)_le dr =
ox s w
11
= J.ﬂ (ro uw)_ic dr — J‘ (ro uw) _]W dr
S s

(a) (b)
a) Here we will have:

(ow)e = 0.5(DEN(, J) + DEN(I + 1, )U(I + 1,J) = GE
we = (0.5)(Wp + Wg) = 0.5(W(L, J) + W + 1, J))
re = RCV(J)

and:
dr | = SNS()
Thus, setting:

CE = CE RCV(I) SNS(J)
S

AREAEW
Convection E = 0.5 CE (W(IL]) + W(I+1,J))

b) Similarly, we will also have here:
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(ou)y = 0.5(DEN(I, J) + DEN(I — 1, 1)) V(L)) = GW
Wy = 0.5 (Wp + Wyy) = 0.5(W(L, J) + W(I — 1, J))
Iw = RCV(I)

and:

dr | = SNS(J)

Thus, setting:

CW = GW AREAEW
we will get:

Convection W = 0.5 CW (W(L)) + W(I-1,]))

Diffusion terms:

Ijg[ru%]dxdr=fi(ru%}[:dx=
j': (ru %l dx — ji (ru %1 dx
(@) (b)

a) Here the terms will be equal to:

ow)  Wn+Wp WELI+1)- WL
ar | Ampe  DYNPQ)

Uy = VISN = 0.5(VIS(LJ + 1) + VIS(LJ))
r, = RV({J +1)

and:

dx | =SEW()

therefore it is valid:

AREAN = RV(J+1) SEW(I)
We set:

VISN - AREAN
DN =
DYNP(J)

thus the integral is written:

84



Diffusion N = DN (W(LJ+1) - W(LT))

b) Here, similarly, the terms are equal to:

or

(awl _wp—ws _ WL -W(II-1)
Arps DYPS(J)

1, = RV(J)

and:

dx | =SEW(D)

therefore it is valid:

AREAS = RV(J) SEW(I)

if we set:

s = VISS = 0.5(VIS(LJ) + VIS(LJ - 1))

and

VISS - AREAS
DYPS()

DS =

we will get for the integral:
Diffusion S = DS (W(1,J) - W(LJ-1))

For the second diffusion term it is valid:

2 (m_]dxdr_(m._}
] o )

a) These terms take the form:

ow) _wp—ww _ W) -WI-LJ)
Axpyw DXPW(I)

= RCV()
dr | = SNS()
AREAEW = RCV(J) SNS(J)

e = VISW = 0.5(VIS(L,T) + VIS(I — 1,J))

We set:



. VISW - AREAEW
DXPW(I)

DwW

and the integral becomes:
Diffusion W = DW (W(LJ) - W(I-1,))

b) Similarly we will also have here:

ow| _we—wp W(I+1J)-W(J)
ox Axpg DXEP(I)

I, = Iy = RCV(])

and:

dr | =SNS()

AREAEN = RCV(J) SNS(J)

U = VISE = 0.5(VIS(LJ) + VIS(I + 1,7))

and setting:

_ VISE - AREAEW

DE
DXEP(I)

the integral will become:

Diffusion E = DE(W(I+1,J) - W(L,J))

The source term for this equation will be equal to:

ow 1 0 Vw
SOUI‘C€=%"—8;—;2"6—;(I‘MW)“Q";—

This form can be simplified as follows:
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1).

Source=-——6—;—»;5~5r-(u ) -G uw = S =
_pow 10 .\ W _oVw _
T o rar(uw) 2 T
_BOow (wopn wOw) pw oVW_
“ror |ror roor P r
_wou_pw oVw _
SR — =

1ou p oV
_Wi:raf+r2+ "

With the same handling, as for the u, v-speeds, we will also have here:

wp = W(LI)
LQ&J _1wul-wl VISN-VISS 1

r or P TP Args SNS(J) RCV(D)
By VIS, 3)2

P (RCV )

This term does not exist in the Cartesian coordinate system (INDCOS

oV, DEN(LI) V], DEN(LJ 05(V(L))+ V(LI +1)
TS T ROV RCV()
and:

VOL=RCV(J) SNS(J) SEW(I)
Adding these terms, we calculate the source. Then, we set:
Source = (Sum) X VOL

Thus, finally, the following will apply to the calculation of the w-speed:

[Convection N - Convection S] + [Convection E - Convection W] -

- [Diffusion N - Diffusion ] - [Diffusion E - Diffusion W] = Source

This expression eventually becomes:
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0.5CN (W(LJ) + W(LJ+1)) - 0.5CS (W(LJ) + W(LJ-1)) +
+ 0.5CE (W(LJ) + W(I+1,J)) - 0.5CW (W(LJ) + W(I-1,J)) -

- DN (W(LJ+1) - W(LJ)) + DS (W(LJ) - W(LJ-1)) + DW (W(L]J) -
- W(I-1,3)) - DE (W(I+1,J) - W(LJ)) = Source

= W(LJ) [0.5CN + 0.5CE - 0.5CS - 0.5CW + DN + DS + DW + DE] =
= W(I+1,J) [DE - 0.5CE] + W(I-1,J) [DW + 0.5CW] +
+ W(LJ+1) [DN - 0.5CN] + W(I,J-1) [DS + 0.5CS] + Source

Finally, we set the known coefficients:

AE = DE - 0.5CE

AW = DW + 0.5CW

AN = DN - 0.5CN

AS = DS + 0.5CS

AP =0.5(CN + CE-CS-CW) + DN + DS + DW + DE

Turbulence model (CALCTE, CALCED)

The turbulent flows are non-constant and a complete description of
them would require resolving the relevant equations. But because the vortex
scale is about 10 sec, the calculations would be anti-economic. A practical
solution is to convert the governing equations into equations of average time
values, model the occurring turbulent terms and solve them. The model used
in TEACH is that of the two equations k-g, where k the turbulent kinetic energy
and ¢ the scattering rate (degeneration) of the turbulent kinetic energy. The
active viscosity is obtained from the relation:

Cu ok’
Pt = -2 (6.1.23)

The equations of these two variables are as follows in general form:

] o o o
% ['gx— (our®) + %(QTV(P) " A [rreff,cb "&}— Br [rrcff.d) “a?)il =Sg

where ® becomes k and ¢, while the other coefficients are equal to:
Tettd = Hett/Octt,d = WPT

The source term is, respectively:
S, =G-Cpeoee
and:

S, =C; Ge/k—Cy 982/1(
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where the common coefficient G is equal to:
2 2

o~5] (-5 H(E) @) Mgl

The last term exists only in the polar cylindrical coordinate system
(where INDCOS = 2). The values of Ci, oeft,0, are calculated basically
experimentally and in TEACH they have the following values:

Magnitude Symbol
Cu = 0.09 CMU
Cp = 1.0 CD
Ci1 = 1.44 C1
Cp = 1,92 c2
geff,k = 1.0 PRTE
Oeff.e = 1.21 PRED

k is symbolized as TE(l,J) and € as ED(l,J). The calculation grid is P.
The integrations are executed with respect to the general variable ®, since
the equations of k, € are the same. The convection terms of the differential

equation are:

% [—gxm (ourd) + % (QrV‘I’)]

We analyze each one separately:

P

I H v % —5; (our®) rdg dx dy = HA % (our®) dx dy =

J’n (QUI(D)J; dr = J.n (our®), dr — J.n (ourd),, dr
] 5 ]

(a) (b)
a) We have calculated terms of this form once again, so we proceed

without detailed explanations.
(ou)e = (op + 0)/2 U(I + 1,J) = 0.5(DEN(IJ) + DEN(I1 + 1,))) U(I + 1,J) = GE

®, = (Gp + Dg)/2 = 0.5(DLT) + B + 1,7))
r,=RCV(J)

dr || = SNS(1)

SO we set as a surface:

AREAEW = RCV(J) SNS(J)
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Thus, setting
CE = GE AREAEW

the integral will be written as:

Convection E = CE 0.5(®(1,J) + ®(I+1,]))

b) Similarly, for this term it will also be valid:

(ou)y = (op + ow)/2U(1,J) = 0.5(DEN(1,J) + DEN(I - 1,J)) U(1,J) = GW
Iy =TI = RCV(J)

and:

dr || =SNS(3)

therefore we have again AREAEW and still:

Dy = (Pp + Pw)/2 =0.5(2(1,J]) + DI - 1,J))

Then, CW = GW AREAEW and the integral takes the form:
Convection W=0.5CW(D(L])+D(I-1,1))

b) The next convection term is equal to:

1| &
= [a (QW‘D)]

which, when completed, will give:
0 € n
Jf 5, (erve) dr ax= [ (orva) ] dx=
e c
[ (erva), dx~[ (orv), dx

(a) (b)
a) The analysis of these terms is the same as before.

(0V)n = (0p + ON)/2V(LT) = 0.5(DEN(LJ) + DEN(LJ + 1)) V(LT + 1) = GN
=RV + 1) |

and:
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dx]_ =SEW()

therefore the surface is equal to:

AREAN = RV(J+1) SEW(I)

Finally, we set CN = GN AREAN and thus the integral takes the form:

@, = (Pp + On)/2 = 0.5(D(LY) + DT + 1))
Convection N = 0.5CN(®(LJ) + ®&(LI+1))

b) Similarly, it will also be valid here:

(oV)s = (op + 0s)72 V(LJ) = 0.5(DEN(LJ) + DEN(LJ — 1)) V(LJ) = GS
rs = RV(J)

and:
dx . = SEW()

so the surface is equal to:

AREAS = RV(J)*SEW(I)
Dg = (Op + Ps)/2 = 0.5(P(LT) + D(L,T — 1))

We set CS = GS AREAS and thus the integral is written as follows:
Convection S = 0.5CS(®(L,)) + &I,T+1))

The diffusion terms are:

Ao (. D) O( . o®
r| ox eff,d Sic % eff,d@ or

[eff = Weft/Oeft, o = W/Pr , where PR becomes for ® = k - PRTE and for ®

= &> PRED.

We analyze each term separately:
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The term p/Pr is complex, since it contains p which changes at the
ends of the control volume and Pr which is constant throughout the calculation
space. Thus, the following will apply:

(W/Pr)e = (up + up)/(2Pr) = 0.5(VIS(LJ) + VIS(I + 1,J))/PR
r. = RCV(J)

and:
dr . = SNS(J)

thus, the surface is equal to:

AREAEW = RCV(J) SNS(J)

[%1 = (Pg — Pp)/Axpp = (P(I + 1.T) - ©(1,7))/DXEP(I)

We set:
GAME = (u/Pr).

and:

DE = GAME AREAEW/DXEP(I)

Thus, the integral takes the form:

Diffusion E = DE (®(I+1,J) - ©(LJ))
b) Similarly for this term it will also be valid:

(W/Pr)y = GAMW = (uy, + up)/(2Pr) = 0.5(VIS(LJ) + VIS - 1,J))/PR
Iw = I = RCV(J)

and:
dr | =SNSQ)
so the surface becomes AREAEW = RCV(J) SNS(J)

[%(31 = (Pp — Pw)/Axpw = (P(LJ) — @(I ~ 1,J))/DXPW(I)

Thus, we set:

DW = GAMW AREAEW/DXPW(I)

so the integral will be:

92



Diffusion W = DW (®(LJ) - ®(1-1,]))

j'j { dedr je( L+ ‘Z\?}J dx =

0P 0P
a) Similarly to the first term it will be valid:

(WPD) = (pp + pn)/(2Pr) = 0.5(VIS(L) + VIS(LT + 1))/PR = GAMN
=RV(J +1)

and:
dx | = SEW(I)

so we have the surface AREAN = RV(J+1) SEW(I)

{%?l = (®n — Pp)/Arpy = (P + 1) — B(1,J))/DYNP(J)

We set:

DN = GAMN AREAN/DYNP(I)

therefore the integral will be:

Diffusion N = DN (®(LJ+1)-®(1,J))

b) Similarly it will also be valid here:

(w/Pr)s = (up + ps)/(2Pn) = GAMS = 0.5(VIS(LY) + VIS(I,J — 1))/PR
r; dx|_ = AREAS = RV(I) SEW(I)

[%‘:il = (®p — D)/ Arps = (B(I,T) — D(L,J — 1))/DYPS(I)

We set:

DS = GAMS AREAS/DYPS(J)
therefore the integral will be:
Diffusion S = DS (®(1,])-®(LJ-1))

Source Terms:




In the source terms the basic parameter is G. We will calculate each
term separately:

[%l = (We — W)/ AXey, = [0-5 (Wp + WE)}/ SEW() -

DWDX = [0.5(W(LJ) + W(I + 1,J)) — 0.5(W(LJ) + W(I — 1,1))]/SEW()

(%J = (Wn — W)/ Alpg = [0.5(Wy + Wp) — 0.5(Wp + Ws)]/SNS(J) -

DWDY = [0.5(W(LJ + 1) + W(LJ) — 0.5(W(LJ) + W(LJ — 1))}/SNS(J)
(w/1)p = WDR = W(I,J)/RCV(J)
%l‘ = DUDX = [U( + 1, J) - U(L, 1)l/SEW(I)

gv-;l =DVDY =[V(,J + 1) - V(LJ)]/SNS()

@l = (U, = Uy)/Arys = DUDY

or

Ar,, = SNS(Q)

The term Un will be calculated as the average value of the values at the
4 neighboring points 1, 2, w, e (see figure 6.1.3), while Us at the 4 neighboring
points w, e, 3, 4. Thus, we have:

U, = 1/4U@ D+ UL T+ 1) +UI +1,7) + UI + 1, T + 1))
U, = I/4(UILT) + UI + 1,7) + ULI - 1) + Ud + 1,] - 1))

v
[&l =(V,— Vw)/Agw =DVDX

Axew = SEW(I)

As before, the term Ve will be calculated as the average value of the
speeds at the 4 neighboring points n, 3", 4", s. Vwwill be calculated with the
help of the neighboring points 1°, 2, s, n. Thus, we have:

Ve = 1/AVEI) + VI + 1) + VI + 1,]) + VI + 1,] + 1))
Vi = ANVII) + VLT + 1) + VI - 1,]) + VI = 1,] + 1))

v/1)p = 0.5 [(v/1)y + (V/1)] = 0.5[V(LI)/RV( + 1) + V(LT)/RV(J)]
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The term V(1,J)/RV(J) is set as VDR, so this term is written as follows:
0.5[VDR+V(I, J+1)/RV(J+1)]

Mp —this term, because it is stored at P, always takes the value VIS(I,J).
Finally, all these terms are added and multiplied depending on the volume:

VOL = RCV(J) SEW(I) SNS(J)

in order to give us the term G which in the program is calculated once
in CALCTE with the name GEN(I,J). All the terms are composed as follows:

[Convection N - Convection S] + [Convection E - Convection W]+
[Diffusion N - Diffusion S] - [Diffusion E - Diffusion W] = Source

This expression is written as follows:

0.5CE(P(LI) + ®(1+1,3)) - 0.5CN(®(LT) + O(I-1,7)) +

+ 0.5CN(®(L)) + B(L,I+1)) - 0.5CS(D(LI) + B(LJ-1)) -

- DE(®(1+1,3) - ®(L))) + DW(S(T) - ®(1-1,7)) -

- DN(®(LJ +1) - ®(1,3)) + DS(P(LI) - ®(LJ-1)) = Source —

- O(LI)[0.5CE - 0.5CW + 0.5CN - 0.5CS + DE + DW + DS + DN] =
= ®(I+1,J) [DE - 0.5CE] + ®(I-1,]) [DW + 0.5CW] +
+ ®(LJ+1) [DN - 0.5CN] + ®(1,J-1) [DS + 0.5CS] + Source.

Finally, we set the terms:

AE = DE - 0.5CE

AW = DW + 0.5CW

AN = DN - 0.5CN

AS = DS + 0.5CS

AP = 0.5(CE - CW + CN - CS) + DE + DW + DS + DN

LISOLYV is then called, to calculate TE(I,J) in CALCTE and ED(I,J) in
CALCED. Finally, the correction of y through ¢, k, according to the relation
(6.1.23), remains. This is done in the subroutine PROPS which, when the
logic indicator INPRO is true in each scan, is called upon to modify the values
of the density, the viscosity and the flow characteristics. Under the heading
VISCOSITY the following are done: the old value of the viscosity is stored in
the variable VISOLD.

If the calculated value of ED(l,J) becomes zero, it will cause an error
(run time error) since it is in the denominator in the relation (6.1.23).
Therefore, a check is made for its value. If it is equal to zero, the viscosity
takes the predetermined initial value VISCOS = 1,9 x 10°°.
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VIS(L) = DE&I,J) TE(LJ)* CMU/ED(I,T) + VISCOS

Turbulent viscosity laminar flow
viscosity

With the under-relaxation coefficient URFVIS the viscosity value finally
becomes:

VIS(L,J) = URFVISVIS(LJ) + (1 — URFVIS)VISOLD

As we saw in our analysis, all the differential equations end up in a
form, such as the following:

N
® ¢
ap Pp = E]('I;I’(I)J -+ SS’ /1 /Z
(/47
®S

—8 L

where the term Zjindicates the sum at the nodes N, S, E, W of the grid
corresponding to the control volume in which we do the integration. In all the
differential equations there was a source term which we symbolized by So
and which we completed in the control volume in a different way than in the
other parameters. In fact, we did linearization of the source in the general
form.

S¢=S$¢P+Su¢

In the subroutines CALCx the terms Sp and Su are symbolized as
SP(1,J) and SU(l,J) respectively. The integration now takes the form:

[ sedv= (S';‘,’ Dp + s:f')v
v
The term Sp does not often appear and only Su exists, while in other
cases both appear.

The term Sp is contained inap®, which is equal to:

ool D L @D D D D
ap ZZj{Ij—Sp V=apN+ o + Oy + O —Spv

In the program the terms q; are the terms AN, AS etc. that we defined
at the end of each integration.

In order to have uniformity on the line of the CALCx subroutines in
cases where there is no term Sp®, the program sets as Sp® the term:

&% = —(CW - CS+CE - CW)
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while at the same time it sets as a source term of type Su® the term:
S®? — (CN = CS + CE — CW) @(1,J)

In this way, the two terms are cancelled algebraically, leaving the
actual source terms. In any case, however, because the term Sp® is
subtracted from the sum ofq;, it is possible to haveapr< 0. This should not be
the case under any circumstances, as most physical processes do not have a
source term dependent on the magnitude ® with positive slope. This would
lead to instability, since an increase in ®p would lead to an increase in the
source term Sp®, which of course leads to an increase in®p, with the result
that, if there is no mechanism to abduct®p, unrealistic processes take place.

For this reason in each CALCx a check is made for Sp so that, if it has
a positive value, it is zeroed. The linearization of the source terms
presupposes the existence of an iterative process for the correction of the
values. A better approach is achieved by under-relaxing the terms Su® by
means of an under-relaxation coefficient. For this reason, in CALCx S.® is set
as follows:

ap = op/URFx
ST = ST + (1 — URFx)ap®p

where URFx is the under-relaxation coefficient, which takes different
values, depending on the case (URFU, URFV etc.). In every calculation
process there are divergences, which, when they are small enough, give us
the correct results. In the subroutines CALCx the divergences are defined by
the characteristic RESORXx and are:

RESORx = 5o ®; + St — ap Dy

This variable is called remainder and is summed for all the grid points.
Its reduction also shows us the convergence of the iterative calculation
process.

On each side of the control volume we have a sum of quantities ®, due
to diffusion and convection. Let’s take, for example, the end e of a control
volume.

bl

~

a
" Jos)
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The calculation of the integrals at e always gives us a term of the form:
Je=05CE(®( + 1,J) + B(LJ) - DE(®( + 1,J) — O(LJ))

This term expresses the net reduced flow rate through the wall e due to
diffusion and convection. We can write it as follows:

Je=(0.5 (CE+DE) (I)(&J)-(I)(I+ 1,)[DE-0.5CE]
b
Dp PE
If we set:

A = DE + 0.5CE
B = DE - 0.5CE

we can write more simply:
Jo = A®p — Bdg

If A and B are negative, then, when ®p increases, Jedecreases and,
when ©®e decreases, Jealso decreases. This result is wrong and arises,
because we ignored the effect of ue on®e. It should, therefore, be valid:

A=0
B=0

which means:

DE + 0.5CE =0
DE-05CE=0

If we assume that 0,5CE is positive, then we can write:

DE + |0.5CE| =0 (6.1.24)

DE - [0.5CE| =0

For (6.1.24) to be valid, it is enough to set in the position of DE the
maximum of DE, |0.5CE|. If we set DE, our basic relation arises, while, if we

set |0.5CE|, we have (a) positive and (b) zero. If again |0.5CE| is negative,
then it will be valid:

DE - [0.5CE| 20 (6.1.25)
DE + [0.5CE| =0

which is the same as above. This is what the subroutines CALCXx of
TEACH do, where with commands of the formula:
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(CALCU)
AE(LJ)=AMAX1(ABS(0.5CE), DE)-0.5CE

they ensure that relations like that of (6.1.25) will be valid. In other
cases, the comparison is more complex. From the calculations we made in
CALCU we have, for example:

J. = CE(U(LHWFE() + U + 1,J)(1 - WFE(I)) - DE(U(I + 1.J) - U(LJ)) —
— J, = U(LI)DE + CE WFE(1)) - U(I + LIYDE - CE(1 — WFE(I)))
where, according to what we have said, the following should be valid:

DE + CE WFE(I) 2 0

DE - CE(1 - WFE(I)) > 0 (6.1.26)

The relation (6.1.26) is satisfied in the following way:

DE = AMAXI(DE, -WFE(I) CE, CE(1 - WFE(I)))
AE(LJ) = DE - (1 - WFE(I)) CE

and finally we demand:

AE = DE - 0.5CE

AW = DW + 0.5CW

AN = DN - CN(1 - WEN(J))

AS = DS + CS(1 - WFS(J)) |

AP = CN WFN(J) - CS WFS(J) + DE + DW + DN + DS - 0.5CE - 0.5CW
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CHAPTER 7

IMPLEMENTATION OF THE COMPUTATIONAL
PROGRAM

7.1 Implementation of the Computational Program

The first step in implementing the computational program for a specific
problem is to determine the resolution area and the grid.

NJ

R NS S, NN S -
- : t
JSTEP T 1 RLARGE
RSMALL |
2 | ]
il . B 4 1
1
1 2 3 NI
k— ALTOT —>I

The resolution area is limited by the input plane, the cylindrical wall
(outlines), the axis of symmetry and the output plane. The calculations start
from the plane of STEP. The grid used may be uniform or gradually increasing
with an expansion coefficient EPSX (1.2 or smaller), in order to allow the grid
to be concentrated in the recirculation or near the wall.

The handling near the wall must be careful in introducing the limit
conditions (subroutine PROMOD).

On the axis of symmetry the total vertical flow of the variables is equal

to zero (OP/Ar=0) At the input, uniform variables are defined for all the
variables:

U = Ujn
V=0

k = kin=iU},

e =g =Kkin /L

where i = turbulence intensity coefficient and:

L=AD/2 where A = length scale factor
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In the equation P, however, the output speeds are required for the
mass conservation. The speeds are obtained at the output with the
assumption of zero slope in combination with the application of the total mass
balance in the entire flow solution area.

In Section O of the subroutine CONTRO, where the program is mainly
controlled, DIMENSION, COMNON elements and, also, the scan numbers
(NSWP®) of the repetition lines are declared. Another important parameter
identified here is the maximum dimensions of the ®-tables (IT, JT).

Section 1 defines the control indicators and the parameters related to
the grid, the selection of the equations to be resolved, the determination of the
values of the fluid properties, the turbulence constants, the limit values and
the parameters for the control of the program and the printing. The term “grid
determination” defines INDCOS, NI, NJ, the cylinder spoke RLARGE and the
cylinder length of calculations ALTOT. Also, NI = NJ = 30 define a 30x30 grid
(give 28x28) cells. RSMALL is the spoke of the small diameter of STEP. The
grid coordinates X(1), Y(1) are defined as symmetric of X(2) and Y(2),
respectively.

In Section 1 the parameters INCAL® are declared, to select the
equations to be resolved (u, v, p’, k, € and p). The coordinates of the position
(IPREF, JPREF) for the pressure determination, the printing parameters
MAXIT and the under-relaxation coefficients URF® are given.

In Section 2 of CONTRO the initial values (zero) are determined for
the variables ® and the geometric quantities are defined through the
subroutine INIT. The initial fluid properties are also calculated through
PROPS. The subroutine INLET is called and then the input values and the
improved initial distributions of the variables are determined. The values
within the flow field are equalized with the input values with the speed U and
the mass flow rate (FLOWIN) is estimated. The initial information and the
initial fields ® are printed and the normalized quantities of the mass and the
momentum sources are calculated. The mass sources are normalized with
FLOWIN and the momentum sources with XMONIN(=FLOWINXUIN).

In Section 3 of CONTRO the iterative “LOOP” of the achievement of
“CALL” in the different subroutines @ is arranged and care is taken for
intermediate prints in multiple of the INDPRI repetitions. Also, the control of
the termination of the calculation process based on SORCE takes place.

In Section 4 the final values of the tables ® are printed via the “CALL”
command of the subroutine PRINT.
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In Section 1 of the subroutine INIT the calculations of the coordinates
of the position of the speeds (XU(l), YV(J)), the dimensions of the cells
(SEW(I), SNS(J), and so on) are done.

In Section 2 the variables are given the initial zero values apart from
DEN(I,J) = DENSIT and VIS(1,J) = VISCOS.

The subroutine PROPS calculates the fluid properties (herepet). The
exchange coefficients pef/okand pef/Oe are calculated in CALCTE and
CALCED respectively (ok—» PRTE, o~ PRED).

The structure and the indexing of the subroutine CALCU is examined
to find details for all the subroutines CALC®. GN, GS etc. are the mass flows,
CN, CS etc. and DN, DS etc. represent coefficients of transfer and diffusion,
respectively. SMP represents the local mass production Mp and the “hybrid”
difference method is executed through the functions AMAX1(). The complete
source of the finite difference equation is assembled, since the subroutine
MODU is called in PROMOD for the necessary source modifications at the
limits etc. It should be noted that prior to LISOLYV for the application of the LBL
method, indirect under-relaxation is performed by modifying the finite
difference equation coefficients.

The introduction of the limit conditions is done in PROMOD by
modifying the appropriate coefficients. Consequence of the “upper wall” is the
introduction of shear force along the cylindrical wall. The procedure followed
is the selection of an appropriate shear equation in accordance with y* , the
calculation of Tw (TAUN(I)) and its introduction by SP(l,J). Usually, the shear
effect is removed, by setting AN(1,J) = 0.

The “west wall” and the “axis of symmetry” are treated by setting the
“vertical flows” equal to zero. We handle the output speeds (U(NI,J)) with a
zero degree view in combination with the mass balance. The handling of the
V-momentum equation is similar to that of the U-momentum, except that the
calculations are now made for the “west wall”.

In the subroutine PROMOD modifications are made for the k-equation,
setting the vertical flows on the wall equal to zero and adjusting the production
term (GENCOU). The practice of the “zero slope” on the axis of symmetry
with regulation of GEN(I,2) is used.

€ is determined at the adjacent nodes of the wall by the source
linearization method (GREAT =103 in CONTRO) and on the axis of symmetry
the vertical flow is set equal to zero.

The subroutine PROMOD plays a very important role in the program,
because there the sources and the limit conditions are modified, in order to
adapt to the particular problem. It is divided into Sections, each of which has a
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special variable @, starting from ENTRY and ending in RETURN. The points
of the beginnings have been named MOD® and & are the relevant variables
(U, V, P and so on).

The subroutine LISOLV performs the repetitions of LBL, scanning in
the direction W-E. The coefficients of the iterative relation are assembled
along the line N-S and the iterative relation is then used to calculate ®.

The tables of the variables, the coordinates and the corresponding
indicators are printed by the subroutine PRINT, as well as the names of the
tables. The tables of the variables PHI(l,J) are printed for the entire field from
(ISTART, JSTART) to (NI, NS) of the coordinates X(I), Y(J), as well as the
labels (HEAD) of each table (PHI(1,J)).
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2YMIMNEPAZMATA

210 TTAQICI0 TNG TTAPOUCAG DITTAWUATIKAG EPYOTIag HEAETHOAPE TO BEPQ
TNG PEUCTOUNXAVIKNAG KAl TTIO OUYKEKPIPMEVA TO TTPOYPAPUA TTPOCOMOIWONG
teach-t. Autdé pag Boribnoe va evipu@rOOUPE OTOUG TEXVIKOUG OPOUG TNG
€1I0IKOTNTAG OTNV AyYAIKY) YAWoOO Kal TOV TPOTTO JETAPPAONG VOG EYXEIPIDIOU
atmmd TNV eAANVIKN otnv ayyAikl yAwooa. H 6An diadikacia atrotéAece pia
ETTOIKOQOMNTIKA €vaAoXOANON, TOOO ME TO QVTIKEIMEVO TNG UTTOAOYIOTIKNG
PEUCTOUNXAVIKAG, 000 Kal PE TNV KaBautd diadikacia Tng METAPPACNG, N
OTTOIa AV KAl ApPKETA QUOKOAN AOYW TWV EIBIKWY OpWV KAl TUTTWYV, KEVTPIOE TO
eVOIOQPEPOV PAG KAl hJAG Bori@noe OTO va €UTTAOUTIOOUME TIG YVWOEIG pag. H
META@POON €ival KUPIOAEKTIKR, akoAouBriBnke O n dIdtagn Tou €AAnvViKou
OUYYPAUMOTOG, O€ MIa TTPOCTTABEIa va unv EE@UyoUuE atmo To UQOG Kal TO
ETTIOTNUOVIKO  TTEPIEXOMEVO  TOU  PETOQPAlOpEVOU  OuyypaupaTog.  Ev
KaTakAEgidI, eATTiCoupe OTI n TTapoUCa BITTAWMATIKN Epyacia Ba @avei XpHoiun
O€ QOITNTEG KAl 0€ OUVAOEAPOUG UNXAVOAOYOUG NXAVIKOUG, KABWG ETTIONG KAl
oe duvnTikoug goitnTéc ERASMUS Trou Ba Toug BonBroel va aoxoAnBbouv pe
TOV OUYKEKPIYEVO TOPED OTAV ayYAIKA YAwoOoa.
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