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ΠΡΟΛΟΓΟΣ 

 

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Πανεπιστήμιο 

Πελοποννήσου στο τμήμα Μηχανολόγων Μηχανικών. Η μετάφραση του 

συγκεκριμένου βιβλίου θα διευκολύνει την χρήση του από όλους τους 

μηχανολόγους καθώς και προπτυχιακούς και μεταπτυχιακούς φοιτητές του 

τμήματος μηχανολογίας.Επίσης, θεωρούμε ότι θα διευκολύνει και φοιτητές 

ERASMUS που φοιτούν ή θα φοιτήσουν στο τμήμα αυτό, στο πλαίσιο της 

κινητικότητας ERASMUS, για σπουδές ή/και για πρακτική άσκηση, οι οποίοι 

και θα διευκολυνθούν με την μετάφραση του συγκεκριμένου βιβλίου να 

παρακολουθήσουν με άνεση το σχετικό μάθημα στην αγγλική γλώσσα. Αυτό 

ακριβώς επιδιώξαμε με την εκπόνηση της συγκεκριμένης διπλωματικής και 

θέσαμε σαν στόχο όταν αποφασίσαμε να ασχοληθούμε με την μετάφραση του 

συγκεκριμένου συγγράμματος, αφού είχαμε την συγκατάθεση του 

διδάσκοντος και συγγραφέα του βιβλίου στην ελληνική γλώσσα,Δρ. 

Κωσταντίνου Μαυρίδη. Ένας άλλος λόγος που μας οδήγησε στην ανάληψη 

της συγκεκριμένης διπλωματικής είναι το γεγονός ότι δεν υπάρχει μετάφραση 

του βιβλίου στην αγγλική γλώσσα. 

Κατά την διάρκεια της μετάφρασης ακολουθήσαμε πιστά την διάταξη  

και τα περιεχόμενα του συγγράμματος. Στην αρχή μελετήσαμε τις γενικές 

αρχές του υπολογιστικού προγράμματος, στην συνέχεια είδαμε για τις 

διέπουσες εξισώσεις της ρευστομηχανικής. Επιπρόσθετα, είδαμε την επίλυση 

εξισώσεων πεπερασμένων διαφορών, ακόμη μελετήσαμε τις διέπουσες 

εξισώσεις τυρβώδους ροής. Στο πέμπτο κεφάλαιο μελετήσαμε την δομή του 

υπολογιστικού προγράμματος, ενώ στο έκτο κεφάλαιο μελετήσαμε την 

ολοκλήρωση των διαφορικών εξισώσεων των μεταβλητών του teach-t και 

συμβολισμούς τους σε γλώσσα FORTRAN. Στο τελευταίο κεφάλαιο 

ασχοληθήκαμε με την εφαρμογή του υπολογιστικού προγράμματος. 

 Τέλος, ευχαριστούμε θερμά την Κυρία Δούσμπη Βασιλική για την 

πολύτιμη βοήθεια και την ορθή καθοδήγηση που μας προσέφερε, καθώς 

επίσης ευχαριστούμε  και τον Κύριο Μαυρίδη Κωνσταντίνο, ο οποίος  μας 

έδωσε την άδεια να μεταφράσουμε το βιβλίο του στα αγγλικά.  

 

Βλάχος Στέφανος 

Ζάτσε Αρτέμης 

Φεβρουάριος 2021 
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ΠΕΡΙΛΗΨΗ 

 

 Η παρούσα διπλωματική εργασία ξεκίνησε σαν ιδέα λόγω 

ενδιαφέροντος που υπήρχε για το συγκεκριμένο μάθημα, καθώς και μετά από  

έρευνα μας διαπιστώσαμε πως δεν υπάρχει μετάφραση του  συγγράμματος 

στην αγγλική γλώσσα, έτσι παίρνοντας την έγκριση του κύριου Μαυρίδη 

καταλήξαμε στο συγκεκριμένο θέμα.    

 Το σύγγραμμα αρχικά πραγματεύεται το αντικείμενο και τα 

χαρακτηριστικά του υπολογιστικού προγράμματος το οποίο είναι γραμμένο 

για μόνιμη δισδιάστατη, τυρβώδη, επίπεδη, ασυμπίεστη ροή με 

ανακυκλοφορία. Η επίλυση γίνεται με μια μέθοδο πεπερασμένων 

διαφορών(hybrid) με τις κύριες μεταβλητές να είναι οι ταχύτητες και η πίεση.  

Οι διέπουσες εξισώσεις της ρευστομηχανικής κατανέμονται σε 4 κατηγορίες. 

Είναι οι μερικές διαφορικές εξισώσεις , οι εξισώσεις πεπερασμένων διαφορών 

, η τελική εξίσωση πεπερασμένων διαφορών και η εξίσωση πεπερασμένων 

διαφορών για την ορμή.   

 Η επίλυση εξισώσεων πεπερασμένων διαφορών γίνεται με τη χρήση 

του αλγόριθμου TDMA. Η επίλυση επιτυγχάνεται με τον υπολογισμό κάθε 

γραμμής ξεχωριστά. Ο αλγόριθμος simple επιτυγχάνει την επίλυση των 

εξισώσεων της ορμής  έχοντας εκτιμήσει ένα πεδίο πίεσης. Στο τέλος κάθε 

επανάληψης προσδιορίζεται η σύγκλιση μεθόδου όπου συγκρίνονται  οι 

υπολειπόμενες τιμές κάθε εξίσωσης πεπερασμένων διαφορών με 

αποτέλεσμα την αποφυγή της απόκλισης.  Στην είσοδο  της υπολογιστικής 

περιοχής της ροής η καλή γνώση της κατάστασης βοηθάει στον καθορισμό 

των μεταβλητών. Ενώ στην έξοδο της υπολογιστικής περιοχής  ο 

προσδιορισμός των μεταβλητών αυτών δεν είναι σημαντικός.  

 Σε πολλές σύνθετες ροές ενδέχεται να παρουσιασθούν αριθμητικές 

αστάθειες με αποτέλεσμα την απαίτηση προσθετικών τεχνικών  για την 

επίτευξη της σύγκλισης. Το πρόγραμμα TEACH-T είναι ένα πρόγραμμα που 

αποτελείται από υπορουτίνες και αναφέρεται σε  δισδιάστατες σταθερής 

κατάστασης για στρωτές η τυρβώδεις ροές. Παρακολουθεί τις επαναλήψεις 

και κάνει έλεγχο των αποτελεσμάτων δίνοντας στον χρήστη μια καλύτερη 

αντίληψη της επιτυχίας η αποτυχίας της υπολογιστικής διαδικασίας.  Οι 

διάφορες εξισώσεις  μετατρέπονται σε πεπερασμένες και οι μεταβλητές 

συμβολίζονται σε γλώσσα προγραμματισμού. Η αριθμητική επίλυση των 

εξισώσεων στο TEACH γίνεται με την μετατροπή τους σε εξισώσεις 

πεπερασμένων διαφορών με την μέθοδο των όγκων ελέγχου.  

 Για τον υπολογισμό της πίεσης εφαρμόζεται μια ειδική τεχνική, με την 

βοήθεια της εξίσωσης της συνέχειας η οποία δεν έχει όρους πίεσης αλλά μόνο 

ταχύτητας. Στην εφαρμογή του υπολογιστικού προγράμματος το πρώτο βήμα 
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για ένα ειδικό πρόβλημα είναι ο καθορισμός της περιοχής επίλυσης και του 

πλέγματος. Η περιοχή επίλυσης περιορίζεται από το επίπεδο εισόδου του 

άξονα συμμετρίας και το επίπεδο εξόδου. 
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ΕΙΣΑΓΩΓΗ 

Τα τελευταία είκοσι χρόνια, η αριθμητική επίλυση των προβλημάτων 

της ρευστοδυναμικής έγινε πολύ ελκυστική και ένας μεγάλος αριθμός 

επιστημόνων έχει ασχοληθεί με το σχετικό θέμα. 

Για την επίλυση οποιουδήποτε πεδίου ροής, είναι πλέον δυνατή η 

χρήση υπολογιστικών πακέτων, τα οποία, μετά την προσαρμογή του υπό 

εξέταση προβλήματος, δίνουν μια αριθμητική λύση που προσεγγίζει την 

πραγματική. Ένα πρόβλημα υπολογιστικής ρευστής μηχανικής, σε μια 

προσπάθεια επίτευξης του πιο ρεαλιστικού δυνατού αποτελέσματος, πρέπει 

να πληροί ορισμένα γενικά χαρακτηριστικά. 

Τα βασικά στοιχεία είναι τα ακόλουθα: 

• Η δημιουργία ενός πεπερασμένου πίνακα σημείων (κόμβων) 

του πεδίου ροής, που αποτελούν το υπολογιστικό πλέγμα. 

• Η μετατροπή των μερικών διαφορικών εξισώσεων σε ένα 

σύστημα παρόμοιων αλγεβρικών εξισώσεων πεπερασμένων 

διαφορών, οι οποίες συσχετίζουν τις τιμές των αντίστοιχων 

μεταβλητών στους κόμβους του πεδίου με τις τιμές των 

γειτονικών κόμβων. 

• Η μετατροπή των εξισώσεων σε κατάλληλη μορφή για την 

επίλυσή τους με κάποια αξιόπιστη επαναληπτική τεχνική. 

• Η παρουσίαση και αξιολόγηση των αποτελεσμάτων της 

επαναληπτικής διαδικασίας. 

Επίσης, οι όροι που ακολουθούν αυξάνουν την αξιοπιστία της 

υπολογιστικής λύσης: 

• Γενικότητα εφαρμογής: Μια προσπάθεια δημιουργίας 

υπολογιστικού κώδικα με πεδίο εφαρμογής σε όσο το δυνατόν 

περισσότερες περιπτώσεις ροής, με τις λιγότερες δυνατές 

αλλαγές. 

• Ακρίβεια λύσης: Οι αλγεβρικές εξισώσεις είναι προσεγγίσεις 

μερικών διαφορικών εξισώσεων. Η διαφορά μεταξύ των 

αριθμητικών λύσεων του πρώτου και των αναλυτικών λύσεων 

του τελευταίου, δηλαδή του υπολογιστικού σφάλματος 

(trancation error), πρέπει να είναι όσο το δυνατόν μικρότερη. 

• Σύγκλιση: Ένα χαρακτηριστικό μιας επαναληπτικής μεθόδου 

επίλυσης ενός συστήματος παρόμοιων αλγεβρικών εξισώσεων 

που οδηγεί στην ομαλή λύση τους. Μια αξιόπιστη μέθοδος 

συγκλίνει υπό οποιεσδήποτε συνθήκες. 

• Λύση Οικονομία: Η βασική ανάγκη μιας μεθόδου είναι να είναι 

γρήγορη και οικονομική. Αυτή η ανάγκη για «υπολογιστική 
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οικονομία» παίζει σημαντικό ρόλο στη δημιουργία 

οποιασδήποτε υπολογιστικής μεθόδου. 

 

Οι προβλέψεις για τη μεταφορά θερμότητας και τη μηχανική ρευστών 

μπορούν να ληφθούν με δύο κύριες μεθόδους: την πειραματική έρευνα και 

τον θεωρητικό υπολογισμό. Τα τελευταία χρόνια, η συνεχής αύξηση της 

χωρητικότητας των υπολογιστών, η βελτίωση των μεθόδων επίλυσης των 

εξισώσεων Navier-Stokes (ή Reynolds) και η βελτίωση των τυρβώδη 

μοντέλων που χρησιμοποιούνται για τον υπολογισμό των τυρβώδους τάσεων, 

που εμφανίζονται στις εξισώσεις Reynolds, σε συνδυασμό με την ανάγκη για 

χαμηλού κόστους μεθόδους σχεδιασμού, έχουν οδηγήσει στην εκτεταμένη 

χρήση της Υπολογιστικής Θερμο-Ρευστικής Μηχανικής (Υπολογιστική 

Ρευστική Δυναμική και Μεταφορά Θερμότητας (CFDHT)) ως ένα επιπλέον 

εργαλείο διεξαγωγής πειραμάτων καθώς και της διαδικασίας σχεδιασμού. 

Τα πλεονεκτήματα του θεωρητικού υπολογισμού σε σχέση με την 

αντίστοιχη πειραματική έρευνα είναι: 

• Το χαμηλό κόστος, το πιο σημαντικό πλεονέκτημα μιας 

υπολογιστικής πρόβλεψης. Στις περισσότερες εφαρμογές, το 

κόστος κατασκευής και εκτέλεσης ενός υπολογιστικού 

προγράμματος είναι πολλές φορές χαμηλότερο από το κόστος 

μιας αντίστοιχης πειραματικής έρευνας. 

• Η ταχύτητα κατασκευής και εκτέλεσης υπολογιστικής έρευνας 

σε αντίθεση με αντίστοιχη πειραματική έρευνα. 

• Οι πλήρεις πληροφορίες που συλλαμβάνονται (με την επίλυση 

ενός προβλήματος με υπολογιστική μέθοδο) σε ολόκληρη την 

επιφάνεια της λύσης που μας ενδιαφέρει. Σε αντίθεση με το 

πείραμα, υπάρχουν ελάχιστες απρόσιτες υπολογιστικές 

περιοχές και δεν υπάρχει επίσης διαταραχή ροής από τα 

όργανα μέτρησης. 

• Η δυνατότητα εύκολης προσομοίωσης σε έναν θεωρητικό 

υπολογισμό των πραγματικών συνθηκών. Δεν είναι δύσκολο για 

ένα υπολογιστικό πρόγραμμα να μιμείται μικρές ή μεγάλες 

διαστάσεις, να χειρίζεται χαμηλές ή υψηλές θερμοκρασίες, 

τοξικές ή εύφλεκτες ουσίες ή να ακολουθεί πολύ γρήγορες ή 

πολύ αργές διαδικασίες. 

Παρά τα παραπάνω πλεονεκτήματα του θεωρητικού υπολογισμού, δεν 

πρέπει να υπάρχει υπερβολικός ενθουσιασμός γι 'αυτό και είναι χρήσιμο να 

ληφθούν υπόψη και τα μειονεκτήματα και οι περιορισμοί του. Ο υπολογισμός 

με τη χρήση υπολογιστών επιλύει τις συνέπειες ενός μαθηματικού μοντέλου. 

Η πειραματική έρευνα, από την άλλη πλευρά, παρατηρεί την πραγματικότητα. 
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Τα όρια ισχύος ενός μαθηματικού μοντέλου περιορίζουν τη χρησιμότητα του 

θεωρητικού υπολογισμού. Το τελικό αποτέλεσμα του θεωρητικού 

υπολογισμού εξαρτάται τόσο από το μαθηματικό μοντέλο όσο και από την 

αριθμητική μέθοδο που χρησιμοποιείται. Μια σωστή προσπάθεια για μια 

πρόβλεψη πρέπει να είναι ένας συνετός συνδυασμός θεωρητικού 

υπολογισμού και πειράματος. Η εμπλοκή των δύο παραγόντων εξαρτάται από 

τη φύση του προς επίλυση προβλήματος, τους στόχους της πρόβλεψης και 

τους οικονομικούς και άλλους περιορισμούς της κατάστασης. 
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INTRODUCTION 

 

 In the last twenty years the numerical resolution of Fluid Dynamics 

Problems has become very attractive and a large number of scientists have 

dealt with the relevant subject.  

 In order to resolve any flow field, it is now possible to use 

computational packages, which, after the adaptation of the problem under 

investigation, give a numerical solution that approximates the actual one. A 

Computational Fluid Mechanics problem, in an effort to achieve the most 

realistic possible result, must meet some certain general characteristics. 

 Its main elements are the following: 

• The creation of a finite table of points (nodes) of the flow field, which 

make up the computational grid. 

• The conversion of the partial differential equations into a system of 

similar algebraic finite difference equations, which correlate the values 

of the respective variables at the nodes of the field with the values of 

the neighboring nodes. 

• The transformation of equations into a suitable form for their resolution 

by some reliable iterative technique. 

• The presentation and evaluation of the results of the iterative process.  

Also, the following terms increase the reliability of the computational 

solution: 

• Generality of implementation: An attempt to create a computational 

code with scope in as many flow cases as possible, with the fewest 

possible changes. 

• Solution Accuracy: Algebraic equations are approximations of partial 

differential equations. The difference between the numerical solutions 

of the former and the analytical solutions of the latter, namely the 

computational error (trancation error), should be as small as possible. 

• Convergence: A feature of an iterative method of resolving a system 

of similar algebraic equations that leads to their smooth solution. A 

reliable method converges under any conditions.  

• Solution Economy: The basic need of a method is to be quick and 

economical. This need for “computational economy” plays a major role 

in the creation of any computational method.  

Predictions about Heat Transfer and Fluid Mechanics can be obtained by 

two main methods: the experimental research and the theoretical calculation. 

In recent years, the continuous increase in the capacity of computers, the 
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improvement of the methods for resolving the Navier-Stokes (or Reynolds) 

equations and the improvement of the turbulent models used to calculate 

turbulent stresses, which appear in the Reynolds equations, combined with 

the need for low-cost design methods, have led to the extensive use of the 

Computational Thermo-Fluid Mechanics (Computational Fluid Dynamics and 

Heat Transfer (CFDHT)) as an additional tool of conducting experiments as 

well as the design process.  

The advantages of the theoretical calculation over the corresponding 

experimental research are: 

• The low cost, the most important advantage of a computational 

prediction. In most applications, the cost of building and running a 

computational program is many times lower than the cost of a 

corresponding experimental investigation. 

• The speed of building and executing a computational investigation as 

opposed to a corresponding experimental investigation.  

• The complete information that is captured (with the solution of a 

problem by a computational method) in the whole solution surface that 

we are interested in. In contrast to the experiment, there are minimal 

inaccessible computational areas and there is also no flow disturbance 

from the measuring instruments.  

• The possibility of easy simulation in a theoretical calculation of real 

conditions. It is not difficult for a computational program to emulate 

small or large dimensions, to handle low or high temperatures, toxic or 

flammable substances or to follow very fast or very slow processes. 

Despite the above advantages of the theoretical calculation, there should 

be no extreme enthusiasm about it and it is useful to take into account its 

disadvantages and limitations as well. The calculation with the use of 

Computers resolves the consequences of a mathematical model. The 

experimental research, on the other hand, observes reality. The power limits 

of a mathematical model restrain the usefulness of the theoretical calculation. 

The final result of the theoretical calculation depends on both the 

mathematical model and the numerical method used. A correct attempt for a 

prediction should be a prudent combination of theoretical calculation and 

experiment. The involvement of the two factors depends on the nature of the 

problem to be solved, the objectives of the prediction and the financial and 

other restrictions of the situation.  
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CHAPTER 1 

 

GENERAL PRINCIPLES OF A COMPUTATIONAL  

PROGRAM 

 

1.1 Object and Features of a Computational  

Program 

 

 Chapters 1 to 7 give the key features of the general prediction method 

for the transfer of momentum, mass and heat, which are integrated in a 

computational code. The computational program is written for constant two-

dimensional (expandable to three-dimensional), turbulent (or laminar), flat (or 

axis-symmetric), uncompressed flow with recirculation. There is a possibility 

for extension in order to be applied to non-constant three-dimensional flows. 

The provided program list is written for flow in a tube with abrupt expansion 

(STEP geometry). 

 The computational code resolves the relative equations of conservation 

of momentum, mass, energy and so on, with a finite difference method 

(hybrid). The main hydrodynamic variables used are the speeds and the 

pressure. A special procedure, the SIMPLE method (Patankar and 

Spalding,1972), is used to solve the speed and pressure fields, and each 

equation is resolved with an LBL resolving process, using the TDMA 

algorithm. 

 

1.2 Method Applications 

 

In various fields the method is applied in the following fields: 

• In the power generation field: gas turbines, reciprocating engines, 

burners and nuclear reactors. 

• In chemical plants: heat exchangers, blast furnaces.  

• In environmental studies: pollutants prediction, disposal of thermal, 

chemical and radioactive waste in the atmosphere, rivers etc. 

• In the space field: calculation of drag and lift. 
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• In cooling-heating ventilation of buildings: improvement of living 

conditions and physiology, prediction of the air and blood flow through 

the kidneys and arteries.  

1.3 Mathematical Structure of Computational Codes 

 

The mathematical formulation structure of computational codes follows 

the flow chart below.  

 

 As shown in the flow chart, the computational codes are based on the 

laws of nature, conservation (momentum, mass and energy), transfer and 

sources. The laws of nature are transformed directly into finite differences, 

using the analysis of the control-volume method. Tending the number of the 

grid nodes into infinity, the approximation of the finite difference equations 

formed can replace that of the differential equations.  

 In order to enable the prediction through a Computer and resolve the 

finite difference equations, a resolution algorithm is necessary, which should 

be properly integrated in the computer program, take advantage of its speed 

and convey the physical reality. 
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CHAPTER 2 

 

GOVERNING EQUATIONS OF  

FLUID MECHANICS 

 

2.1 Conservation Equations – Partial Differential Equations 

 

 In order to show how the laws of nature can be combined in a 

differential equation, the momentum transfer is taken, for example. According 

to Newton’s second law for the constant flow state, the sum of the momentum 

(Ji) in the i direction must be equal to the net force in the same direction (Si). 

The mathematical expression is: 

 

 The mathematical expression includes (𝐽) flows, which represent the 

momentum transfer by both transfer and diffusion (viscosity effect). They have 

as their cause the transfer laws (Newton’s law of viscosity). According to the 

transfer law, in a Newtonian turbulent fluid, the total flow is equal to: 

    (2.1.1) 

 In the (2.1.1) relation there are also additional terms (or sources) that 

contribute to the momentum transfer, which arise from the “source laws” and 

describe the contribution due to pressure, buoyancy forces etc. Source law: 

       (2.1.2) 

 Replacing the laws of transfer and sources in the mathematical 

expression of Newton’s second law, we obtain the differential equation for 

momentum in the x- direction: 
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 (2.1.3) 

 The differential equations for momentum in the other directions, as well 

as for other conserved properties, are obtained in the same way. 

 The beauty of transfer equations in the conservation of various 

properties (excluding the mass), is that they can be expressed by a general 

formula, which for two-dimensional steady-state problems (constant flow), for 

cylindrical coordinates is as follows: 

        
(2.1.4) 

Φ = U, V, k, ε, T, 𝑚𝑗, etc., Γ = μt, Γk, Γε, Γτ, etc. Sφrepresents the sources 

in relation to the transfer of the Φ variable. The continuity equation, or, in 

other words, conservation of mass, has a special expression and will be 

discussed later, after the production of the corrective pressure equation. For r 

= 1 and 𝜕r = 𝜕y we go to a two-dimensional flat flow. 

 

2.2 Finite Difference Equations 

 

 For the production of finite difference equations from differential 

equations the appropriate grid and the storage positions of the variables must 

be developed. The grid used in the plane r-x is a regular rectangle, with 

random distances of the nodes δxPW≠δxEP and is represented by the 

continuous lines: 

 

 Typical clusters of U, V and gradient cells (or control volumes) are 

represented by the dashed lines. Each cell surrounds the position of the 

relevant variable. The variables are stored in different grid positions. The 

pressure and the gradients are stored at the grid nodes, while the speeds are 
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stored at the limits of the gradient cells. This storage system, known as shifted 

“staggered” grid, has the advantage that the variables U, V, P are stored in 

such a way that the pressure slopes leading the U and V speeds are easy to 

be estimated and in addition, the speeds are stored where needed to 

calculate the transferred flow. In  positions the gradient variables P, k, ε, T, 

mj are stored, in  positions the U speed and in positions the V speed.  

 The approach using the control volume (or cell) method is similar to the 

holistic method, but more related to physics. The value of some Φ property 

reported at the node point refers to the average value of the control volume. 

The conservation law for the transfer of some expansive Φ property (mass, 

momentum, energy etc.), can be defined: [(the change of Φ in the cell) = (the 

net introduction rate of Φ into the cell by diffusion) + (the production rate of Φ 

within the cell)]. And mathematically: 

 

w, e, s, n, represent the limits of the cells. Qithe total flow due to 

transfer and diffusion, as a sum around the limits of the cells, giving a natural 

perception and emphasizing on the conservation. The term SΦ represents the 

production in the volume unit in the cell and Φ = U, V, T, mj, k, ε(Φ=1 for the 

mass).Δ(ρΦ)/Δt = 0, for steady-state flow (constant flow). 

 Considering, for the sake of convenience, a one-dimensional transfer 

across the cell limits, the “exact” method of Spalding (1972) for solving the 

western limit of the cell gives: 

 

Qwis the transferable gradient Φ, in the sense of the average value, 

obtained through the balancing coefficient (which depends on the local Peclet 
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number). If the density ρand the diffusion coefficient Γ are not stored in 

uniform grids, balanced values are used to confirm the flow continuity.  

 In order to avoid “computationally accurate” exponential relations, a 

method that uses the “piece-wise” (Patankar, 1980) linear approach is 

adopted, to calculate the “exact” �̇�w Pewrelation (with a small loss of accuracy). 

According to this method, a “central” difference method for a low |Pew| (Peclet) 

number and an “upwind” difference method (asymptotic of the upwind 

relation) for a large |Pew| number are used. This is why the method is called 

mixed (“hybrid”) method: 

 

�̇�e, �̇�nand�̇�sarise in a similar way. 

 

2.3 Source Term 

 

 Τhe total production in the control volume cannot be accurately 

expressed, without knowing the exact expression of the source term SΦ. 

However, we can give it a linear form: 

 

b and c arise during the integration and linearization of the source term 

SΦ, and are generally functions of Φ. This approach offers advantages and 

ease of use in the computational program, in various flow situations.  

 

2.4 Final Finite Difference Equation 

 

 For the case of steady-state flow by replacing the flow and production 

expressions in the conservation law, we produce with the help of the 

continuity the final finite difference equation: 

 

and  combine diffusion transfer coefficients. 
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sum of the neighboring N, S, E, W. 

 

 With the help of the continuity, ap expresses the sum of the combined 

flow coefficients at the nodes N, S, E, W. When b=c=0, ΦPrepresents the 

average value of the sum of the neighboring nodes.  

 

2.5 Introduction of Limit Conditions 

 

 The general finite difference equation is not applicable at the limits of 

the calculation area. Special treatment is required in the cells next to the 

limits, so that there is an advantage in both the conservation law and the flow 

calculation. The following figure shows a typical cell whose western limit 

coincides with a wall.  

 

 According to this arrangement, there is a connection between ΦP and 

Φw in the general finite difference equation. The connection between ΦP and 

Φw is interrupted, by setting the coefficientαw = 0. Also, we need to intervene 

in the flow �̇�w. The flows �̇�e, �̇�nand�̇�s according to the figure remain 

unaffected. There are various ways of intervention in �̇�w. Here, the treatment 

of the “False” (wrong) source is adopted by defining the constants b and c 

(easy in programming). 

 

If we want to enter the limit flow QΟ, we set: 

 

If we want to enter the limit valueΦΟ, there must be: 

 

and we set: 
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 If the relative limit in the calculation area is a wall, α΄wmust be 

estimated based on the wall functions, or by another model describing the 

flow near the wall.  

 Many times, Φ needs to have a constant value within the calculation 

area (secondary infusion set within the calculation area). The “False” source 

treatment is a very useful tool for these cases. We set: 

 

where γ (= large number), e.g. 1030 and Φfix = n the desired constant 

value within the calculation area.  

 

2.6 Momentum Finite Difference Equation 

 

 The previous finite difference equation that has arisen was based on 

gradient variables. The momentum finite difference equations are produced 

similarly with the only exception of the control value shift, because the speeds 

are also shifted. The U-equation mentioned in the cell is: 

 

 We will refer to the pressures in the chapter of the corrective pressure 

equation. The speeds at the limits of the cell, the densities etc., are calculated 

by interpolation, in order to satisfy the continuity for the total flow.  
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CHAPTER 3 

 

RESOLUTION OF FINITE DIFFERENCE 

 EQUATIONS 

 

3.1 Resolution of Finite Difference Equations 

 

This chapter describes the general “Line-By-Line” (ILBL), iterative 

process for resolving all finite difference equations and a special (SIMPLE) 

algorithm for hydrodynamic equations. 

 

3.2 LBL Resolution of Finite Difference Equations  

using the TDMA Algorithm 

 

 In general, the Line-By-Line process is an iterative method, with initial 

assumption of the solution field values and line-by-line solution improvement.  

 When solving equations for the points on the same line (e.g. N-S line), 

the values of the neighboring lines are considered temporarily known. The 

equation is then transformed for each point on the N-S line into such a form 

that only three values (ΦP, ΦNandΦS) are unknown. 

 

 The system of equations for all the points on the N-S line takes a very 

simple form and the table of the non-zero coefficients is tri-diagonal. Φ1 and 

Φi+1are generally known in applications.  
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known. 

 Equations of this type are easily resolved with the TDMA algorithm (Tri-

Diagonal Matrix Algorithm), from the points j=2, to j=i, on the N-S line. 

 For the needs of the TDMA algorithm, the system of equations with 

algebraic manipulation is converted into general iterative relations for Φjand 

the coefficients Aj and C΄΄j. Properly handling the j-th equation we obtain: 

 

where: 

 

The equations take the form: 

 

Φ1is known. Deleting Φ2 from (ii) andΦ3 from (iii) and so on, gives a 

general formula forΦj: 

 

where: 

 

Note:  

 By applying the TDMA algorithm to the N-S line, Ajand C΄΄j from j=2 to 

j=n are calculated from the iterative relations. From the general iterative 

relation we takeΦj, starting with Φn and ending with Φ2(Φ1, Φn+1known). By 

applying the TDMA algorithm to the whole field, the calculation starts e.g. from 
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the extreme N-S line. Then, the calculation is repeated along the next 

neighboring N-S lines, using the recently calculated Φj values by integrating 

them into C΄. The whole grid is scanned (scan = movement from one grid line 

to another) and we may use multiple scans, in order to achieve the desired 

solution. Divergences from the crossings direction (crossing = movement 

along a defined grid line) and the scans are possible. 

 

3.3 SIMPLE Algorithm 

 

 The unknown variables to be solved are the main hydrodynamic 

variables U, V, P and the additional gradient variables k, ε, T, mjetc. Each 

unknown variable requires resolving an equation. The gradient variables 

satisfy this requirement. And the speeds U, V, also satisfy this requirement 

(with the momentum equations). The pressure, however, has no equation. 

There is an additional equation, the continuity equation, but the pressure term 

is not in it. Therefore, a special methodology is required, in order to obtain the 

pressure P. The methodology used here is to resolve the momentum 

equations initially, having estimated a pressure field. After obtaining the 

estimated speeds U, V and, finally, the pressure field corrections, having in 

agreement the speed field with the continuity equation. This resolution 

process is known as SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) algorithm (Patankar and Spalding, 1972).  

 Initially, the field of the pressure P is assumed and the momentum 

equations are solved by the LBL method and corresponding speeds U*, V* 

are produced. The incorrect values of P*, U* and V* require correction P΄, U΄, 

and V΄: 

 

 The shifted “staggered” grid system provides an advantage in the 

corrections of the speeds, or the flow (G΄), with the expression of G΄w, G΄e, 

G΄n, G΄S as coefficients of time slopes t΄, of P΄. We use a linearized flow 

relation to obtain Gw΄ in terms of P΄: 
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and:    

  

 Using the momentum equations in terms of U*, V* and P*, the 

expression for G΄w is finally transformed into a simple formula, with the 

coefficient Dw in terms of αP and b: 

 

 For uncompressed flow G΄ = ρ*U΄. In the compressed flow we should 

be careful when calculating the densities. If the speeds are corrected, the 

mass conservation equation will be satisfied and the mass source Sm is equal 

to zero. Of course, at the originally assumed speeds U* and V* and therefore 

G* the continuity is not generally satisfied and there is a net source mass. For 

a typical control volume we have: 

 

 The purpose here is to correct the speeds and the pressures in such a 

way that the source mass is eliminated. Replacing Gw = G* + G΄ and so on, in 

the mass conservation equation, a Poisson equation for the corrective P΄ 

arises.  

 

where: 

and so on.

residual mass source in 

relation to the assumed G* 

flows.  

 The resolution of the corrective pressure P΄ with the LBL method 

completes the process of obtaining the corrections U΄, V΄ and P΄ required 

forU*, V* and P*. At the limits of the solution fields, if there is a speed vertical 



29 
 

to the limit, no pressure corrections are needed. E.g. at the western limit the 

coefficient Dw must be zero and this is achieved by setting αw = 0 in the 

pressure equation: 

 

 If the limit pressure is given, e.g. Pw = PLIMIT, the corrective pressure 

P΄w is equal to zero. Then Uw and Dw are obtained in a similar way, or from 

the momentum equation (e.g. by the linearization of the Bernoulli equation 

 

 

 The various components of the SIMPLE algorithm previously 

mentioned are now combined with the resolution of the equations of the non-

hydrodynamic variables, in order to achieve an overall combined resolution 

process. The field of all the variables (U, V, P, T, k, ε, and so on) is assumed. 

The coefficients of the momentum equations are calculated and the improved 

values U*, V* are obtained by the LBL method, using prevailing pressures: 

 

 More than one scan may take place, but without the timeout rates of 

the coefficients. At this point the momentum equations are satisfied, but not 

the continuity equation. Then, the coefficients of the corrective equation P΄ are 

calculated and this equation is resolved by the LBL method. Usually, more 

than one scan is required for the corrective pressure equation without the 

timeout rates of the coefficients. Next, the corrective speeds U΄ and V΄are 

calculated and P, U and V are obtained from the relations: 

 

 At this point the continuity is exactly satisfied but not the momentum 

equations. In the next step the coefficients of the non-hydrodynamic equations 

are calculated and the relative gradients Φ are resolved by the LBL method. 

The number of scans required in the same time step depends on the nature of 

the problem. 

 Finally, a convergence test is performed, which if not successful, then 

the recently obtained fields of the variables are considered assumed and the 

process is repeated until final convergence.  
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 Then, the SIMPLE algorithm methodology for the case of the two-

dimensional constant flow for Cartesian coordinates is briefly described.  

 The continuity equation is: 

 

 For steady-state (constant) two-dimensional flow we have: 

 

 The continuity equation becomes: 

 

 With integration in the control volume: 

 

 Using an uncorrected pressure field p*, on the one hand, the 

momentum equations with the calculation of u* and v* are satisfied, but not 

the continuity equation. We have: 

= actual, = assumed, = corrective pressure. 

 The speeds can be corrected through the relations: 

 

 The corrective speed equations are produced by subtracting the actual 

solution from the originally assumed one: 

 

 If the term Σαiu΄i is set equal to zero, it indirectly gives the equation the 

correct solution (the equation is valid in case of convergence). 

 where  

 The corrective speed formula: 
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 can also be written as: 

 

 Replacing the actual speed in the continuity equation: 

 

 Replacing the corrective speeds in terms of corrective pressures: 

 

 We come to the final expression for the corrective pressure equation: 

 

 And in case there is a time limit in the continuity equation: 

 

 The term b becomes: 

 

 

3.4 Method Convergence 
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 All equations satisfy conditions for table convergence (Scarborought, 

1930): 

  with  

 During the resolution process, the convergence is determined at the 

end of each repetition, based on the “residual source” criterion, which 

compares the “residual values” of each finite difference equation with each 

reference value RΦ reference, (RΦ, reference =  a very small value). 

 By using a suitable under-relaxation method for an iterative process, 

convergence can be improved and divergence is often avoided. The 

equations that are solved are non-linear and the under-relaxation is 

necessary: 

 

f = under-relaxation coefficient, 

= current variable with under-relaxation, 

= current variable,  

= previous repetition variable. 

 If the mass flows do not satisfy the continuity, a situation may arise 

where all αj are equal to zero. The finite difference equations take the form: 

 

 The solution is to add an “incorrect” (false) source, by the linearized 

source method. The final finite difference equation then has as additional 

constants bj and cj. The linearized source Sf is : 

 

where: mnet = Σi�̇�i,with �̇�w = GwEw and so on. The finite difference 

equation formula to be solved becomes: 

 

 This addition helps to stabilize the resolution process, without affecting 

the final solution. 



33 
 

 

3.5 Method Accuracy 

 

 The accuracy of the solution process, in general, is a function of the 

convergence and the number of the grid nodes used. For each flow 

configuration, a grid-independent solution is sought, increasing the number of 

the grid lines, until no further change in the final solution is observed.  

 The main source of an incorrect prediction is the “incorrect” (false) 

diffusion that occurs, when the Peclet number is large and the flow is lateral to 

the grid (in the finite difference method, ΦPis calculated as the average value 

of the neighboringΦι). As a solution, the grid could be placed parallel to the 

flow lines or all the Peclet numbers could be reduced.  
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CHAPTER 4 

 

GOVERNING EQUATIONS FOR TURBULENT FLOW 

 

4.1 Turbulent Model of Two Equations 

 

 This chapter presents the integration into the process of resolving a 

turbulent model, to obtain a solution of the equations through average time 

values of the average flow, with the help of two turbulent quantities k and ε, 

which are obtained from their transfer equations. According to the view of the 

Reynolds average time values, the instantaneous values of the speeds and 

the gradient variables are analyzed in the average values and their 

fluctuations: 

 

 For steady-state flows and using Cartesian coordinates the equations 

of average time values for the continuity, momentum and gradient transfer 

take the expression: 

 

μ= laminar viscosity, σΦ= laminar Prandtl/Schmidt number. 

Unfortunately, these equations contain unknown Reynolds stresses and 

gradient flows . These turbulent diffusion flows play an important role in 

determining the flow behavior, as they represent the effects at the micro-scale 

level.  

The adopted method for obtaining a closed equation system is a model 

of “active” viscosity, in which the unknown turbulent diffusion flows are 

expressed in terms based on the “transfer slope hypothesis” (Hinge, 1959), in 
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which the flows are assumed to be proportional to the slopes of the average 

flow properties. The constants of the proportion are μtorμt/σφ,t. 

 

 = turbulent viscosity, 

 = active Prandtl/Schmidt number. 

σΦ,tis often considered to be known, while from the dimensional 

analysis it is concluded thatμtis a function of the turbulent kinetic energy k and 

its scattering rate ε. k and ε are obtained from their transfer equations, which 

is why it is called turbulent model of k-ε two equations: 

 

= friction coefficient, based on experimental measurements = 

0,09. 

 

4.2 Equations of Average Time Values in Turbulent Flow 

 

 The equations of average time values for the continuity, momentum 

and gradient transfer for two-dimensional, steady-state, turbulent axis-

symmetric (or flat, r=1) flows are given: 

 Continuity: 

 

 Momentum: 
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 Gradient Transfer: 

 

 Here μeff and Γeff are the active exchange coefficients, representing the 

sum of the laminar and the turbulent transfer. At high Reynolds numbers (full 

turbulent flow) the effects of the molecular transfer μ and Γ are negligible and 

are omitted in the equations. The expressions Su, SV omit the additional terms 

related to non-uniform viscosity, whose effect is beginning to become 

significant for significant changes of the fluid properties.  

 The necessary equations for the turbulent kinetic energy k and its 

scattering rate ε, which complete the equations of average time values for 

two-dimensional, steady-state axis-symmetric flow, are: 

 Turbulent energy k: 

 

 Scattering rate of energy ε: 

 

where: 
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 The constants (Launder and Spalding, 1974): 

 

 The similarity of these equation to those of the average flow is 

demonstrated by replacing  and  . 

G represents the production of k from the average flow, through the 

turbulent shear stress, and to be precise, ε is the scattering rate of the 

viscosity of k in heat by very small turbulent vortices. The coefficients C and 

the Prandtl numbers σ are generally empirical functions, but they are taken as 

constants for high Reynolds numbers. SGhas other production terms too, the 

effects of which are small, out of flows of non-uniform properties. 

 

4.3 Limit Conditions 

 

 At the input of the computational area of the flow, the variables U, V, Φ, 

k, ε, can be determined by the good knowledge of the particular flow state 

(experimental measurements) or be estimated. E.g. the scattering rate ε can 

be estimated by the dimensional analysis, based on the fact that the 

turbulence is characterized by the energy of k and a scale of L length, which 

represents the size of the turbulent vortices  

 At the output of the computational area (for large Reynolds numbers), 

the identification of the variables is not important. The usual practice is to set 

vertical slopes equal to zero and obtain the output speeds from the mass 

balance. Near the wall the local Reynolds becomes too small and the 

turbulent model is insufficient (it is designed for high Reynolds numbers). 

This, in combination with the abrupt change of the variables near the wall, 

makes the selection of the position of the grid nodes near the wall careful.  

 The average flow equations U, V, P΄ and Φ of the laminar flow are 

converted for the turbulent flow, by replacing μ withμeff, Γ with Γeffand 

introducing some additional source terms, using source linearization. The 
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equations k and ε are not different from the other gradient transfer equations, 

considering Sk and Sεas additional source terms, which are introduced by the 

source linearization method.  

 

= cell volume,  = previous values. 

 

 One point we should note about the treatment of the sources Skand 

Sεis that b must not be negative. This provides us with solution stability and 

confirms that the calculated k values never become negative.  

 Generally, near-wall conditions are considered to be one-dimensional 

Couette flow conditions. The limit layer is considered to have a constant shear 

stress (ττw) and a constant heat flow (�̇�΄΄ = �̇�΄΄w). These conditions require an 

impermeable wall with zero pressure slopes or negligible in the flow direction: 

 

 The momentum equation is then transformed into a special, simple, 

dimensionless form: 

  or   

 In the area near the wall the local Reynolds number varies 

considerably and the adopted approach is the dependence of the local 

Reynolds number, y+ , which is based on the distance y from the wall and the 

friction speed Ut. 

 

 The area near the wall is divided into three sub-areas (Hinge, 1959). In 

the viscous substrate 0 < < 5, where the effects of the viscosity 

predominate, in the inert substrate 30 < < 400, where the flow is completely 

turbulent, but  and in the transition layer 5 < < 30, where the flow is 

not affected only by the viscosity but is not completely turbulent either. The 
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flow separation is followed by the determination of the point, y+= 11,63 (where 

the linear distribution of the speed of the viscous substrate meets the 

logarithmic distribution of the inert substrate), below which the flow is 

assumed to be completely viscous, while the top is completely turbulent.  

For  

For  

 

 U+ = U/UT, κ = 0,4187 von Karman constant and E is an integration 

constant that depends on the size of the change in the shear stress across 

the limit layer and the roughness of the wall. The value E=9,8 is valid for a 

smooth wall and a constant shear stress. Mass transfer effects across the 

limit layer and different pressure slopes are incorporated by modifying E. 

 Also, there is a great mechanical interest in predicting transfer 

characteristics to the walls. The same treatment, as for the momentum 

transfer, is applied to the heat transfer too. The corresponding dimensionless 

equation is: 

 Gradient transfer (e.g. Φ = Τ): 

 

 Constant heat flow across the limit layer is assumed. 

For  

For 

 

Where:   turbulent Prandtl 

number 

and:  

  (Jayatillaka, 1966). 
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= special heat under constant pressure, κ= conductivity coefficient. 

 As before, the Reynolds separation number is 11,63. For y+< 11,63 it is 

assumed to take place with molecular activity. For y+> 11,63 the transfer is 

assumed to be entirely due to turbulence. The heat flow parameter T+is a 

logarithmic function of y+and, also, of a term, which with the integration 

constant CTis combined with the P-function (it is valid for impermeable smooth 

walls). 

 The wall treatment of the k and ε equations is again based on the view 

of a one-dimensional, constant shear stress Couette flow of a limit layer. The 

adopted approach is valid only in the inert substrate, where the flow is 

assumed to be completely turbulent, y+> 30, but sufficiently close to the wall, 

so as the assumption of the constant shear stress to be valid (y+< 400). In this 

area, the local rate of the turbulence production is balanced by the scattering 

rate of ε: 

  factor 

 shear stress in the inert substrate 

and:  

 The turbulent energy equation is transformed into a simple relation that 

describes the shear stressτI(τw) and the scattering rate ε, within the inert 

substrate.  

 The ε equation is transformed into a formula that represents a 

modification of σε  in this area: 

  and:    

 One of the most important consequences of the equilibrium view is the 

final expression for the wall shear stress τw, in terms of k and the turbulence 

constants. 
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 Also, the relation for ε with integration in the control volume (or cell), 

the adjacent to the wall (by extending the equilibrium in the k equation in the 

viscous substrate and the intermediate layer): 

    with   

 Now, to integrate the wall limit conditions, a tangential speed UP is 

assumed, at the usual momentum balance, for a node near the wall: 

 

 For this geometry αs= 0 is set. The incorporation of the correct 

expression of the shear force is introduced by the source method: 

 For the P node within the turbulent area  

 

where 

 

 For the P node within the viscous substrate  

 

 For the speeds vertical to the wall no special treatment is required.  

 The integration of the wall limit conditions for the gradient variables 

follows the same procedure, as in the case of the momentum. The expression 

αS and the gradient flow QSare zeroed by the heat balance: 

 For P within the turbulent area  we have: 
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where:      

  

 

 For P within the viscous substrate  

 

 The integration of QSis again achieved by the source linearization 

method. 

 The integration of the turbulent kinetic energy k requires a special 

procedure. Using the balance for k we set αS = 0 on the wall. The production 

term G in the k-equation is transformed into a simpler form, depending on the 

shear stress  

 

Where  are considered average values in the cell and: 

 

where:   for   

and:        for    

 The whole source  for the balance of k is incorporated 

into the code by the source method with the help of the coefficients b and c. 

 The wall flow, in contrast to k (which is zero), for ε reaches the 

maximum value (much higher than the free flow). This behavior makes it 

difficult to handle αS in the balance of ε, in the cell near the wall. Here a set 
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value forεpis adopted (independent of y+), based on equilibrium relations. 

Within the inert substrate (where the Re number is large) we have: 

in the wall area 

therefore: 

 

where: L is a turbulence scattering scale. The εp value is incorporated 

by the introduction method of the constants b and c (e.g. b = 1030, C = εp1030). 

 

4.4 Instability – Accuracy – Economy 

 

 In many complex flows, numerical instabilities may occur and then 

additional techniques are required, in order to achieve convergence. In simple 

flows there are three main causes of instability. The incorrect definition of the 

initial field may lead to instability. This can be eliminated by improving the 

initial field or by using under-relaxation coefficients. A second reason in the 

production of instability foci is the selection of inappropriate under-relaxation 

coefficients. To correct this, the under-relaxation coefficients are reset. A third 

reason is the incomplete resolution of the finite difference equations during 

the repetition. The corrective pressure equation P΄is the most sensitive in this 

case, because in each repetition the initial field of  P΄ is zero. Increasing the 

number of application of the LBL method eliminates this instability.  

 Accuracy depends firstly on the degree to which the solution satisfies 

the finite difference equations. This degree is reflected in the stress of the 

residual sources. Secondly, on the degree to which the finite difference 

equations satisfy the partial differential equations. In general, smaller grid 

sizes are used to achieve a grid-independent solution. Thirdly, the conditions 

applied to the limits and the limit positions may affect the accuracy of the 

solution, as well. Improvement can be achieved by adjusting the conditions 

and the application positions. And fourthly, a fully convergent, grid-

independgent solution, based on satisfactory limit conditions and application 

positions, depends on the adequacy of the turbulent model in how well the 

predictions reflect the reality compared to the experimental measurements.  

 Indeed, in complex flows the deficiency of the turbulent model may be 

the cause of various instabilities. It is important to distinguish between 
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computational errors and instability (which can be eliminated), and those 

errors due to physical modeling.  

 The requirements of economy, computational time and storage can be 

minimized with some techniques; first, by accurately identifying the initial 

fields (e.g. starting from a correct previous calculation, the computational time 

is significantly reduced); second, with optimal grid arrangement, concentration 

of the grid nodes in areas with abrupt slopes and reduction in areas, where 

the slopes are also useful for grid economy; third, by experimentally finding 

and testing the under-relaxation coefficients, improving the convergence 

factor; and fourth, based on a more realistic convergence criterion for complex 

flows, about 1% of the residual sources (in simple flows the criterion is 

maintained at 0,1%). 
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CHAPTER 5 

 

COMPUTATIONAL PROGRAM STRUCTURE 

 

5.1 Structure of the TEACH-T Computational Program 

 

 The TEACH-T educational program is a program for two-dimensional, 

steady-state, laminar or turbulent flows in Cartesian or cylindrical coordinates. 

In its normal form, it resolves for the variables U, V, P, k and ε (some extra 

variables are easily added). 

 The diagram below shows its overall structure: 

 

 There are five general subroutines related to each particular variable to 

solve: CONTRO, INIT, PROPS, PROMOD, LISOLV and PRINT. In addition, 

there is the CALCΦ subroutine system. The program is generally controlled 

by the main subroutine CONTRO, which performs the initial and the final 

functions, while also controls the repetition. The subroutines CALCΦ perform 

the principal calculations of the finite difference equations for each Φ variable. 

Modifications of the sources and the limit conditions are made in PROMOD 

while PROPS calculates the fluid properties (viscosity, density, etc.). INIT 

performs the initial pre-processing, PRINT gives the output solutions and 

LISOLV performs the LBL repetition. The subroutines INIT, LISOLV, PRINT 

and CALCΦ are independent of the type of the problem. Appropriate 

modifications to each particular problem are required only in CONTRO, 

PROMOD and in rare cases in PROPS.  
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 To demonstrate the TEACH-T computational code the STEP geometry 

(flow in abrupt expansion tube geometry) is obtained. The figure shows how 

the coordinates are determined.  

 

 For cylindrical coordinates we have R(J) = Y(J), while for flat flows R(J) 

= 1. The calculation area is the rectangle limited by I = 2 to (NI – 1) and J = 2 

to (NJ – 1). If desired, the calculation area can be changed. It should be noted 

that the limits of the flow area (dashed lines) always coincide with the limits of 

the main control volumes. The indicators (I, J) refer to the nodes whose 

coordinates are X(I) and Y(J). The figure shows the “staggered” grid storage 

system.  

 

 The gradient variables are stored at the main grid nodes  P → P(I, 

J), P΄→ PP(I, J), k → TE(I, J), ε→ ED(I, J), μeff→ VIS(I,J), ρ→ DEN(I, J), while 

the relative speeds are shifted in the positions (→) and (↑), U → U(I, J) and V → 

V(I, J). The storage positions of the variables in the figure above are within the 

dashed lines. It should be noted that due to the storage way, the calculations 

for gradient variables start at the point (2,2), for the speed U at (3,2) and for 

the speed V at (2,3).  

 The finite difference equation resolution for some variable Φ (= U, V, P 

and so on), is obtained by setting INCALΦ = “.TRUE.”. If we set INCALΦ = 

“.FALSE”., the corresponding equation is not resolved. Similarly, INPRO 

controls the calculation of the fluid properties. The indexing used to determine 

the application number of the LBL method, without time-outing the 

coefficients, for each variable Φ is NSWPΦ (number of scans). Often, it takes 

values from 1 to 6, depending on each Φ and the flow. The under-relaxation 

coefficients take values similarly to the factor URFΦ, which generally takes 

values between 0.5 and 1.0, depending on the particular Φ.     
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 Monitoring repetitions, checking and extracting results give the user a 

better understanding of the success/failure of the computational process on a 

problem. For monitoring, the total number of the performed repetitions is 

stored as NITER and the absolute sum of the residual sources as RESORΦ. 

For the P΄ equation the absolute mass source is stored as RESORM. RESOR 

are usually normalized. The repetition is checked so that the calculations are 

terminated for three reasons: the maximum residual source SORCE is too 

large after 20 repetitions (divergent solution); SORCE is smaller than the 

desired value SORMAX; NITER has reached the maximum allowed number 

MAXIT. 

 The P΄ equation can be satisfied by different pressure fields. That is, 

the pressure is predetermined at the position (IPREF, JPREF) and is set to 

this value with all the other measured pressures at the other nodes related to 

that value. Thus, if this position is within the solution area, the pressure level 

is set. 

 In each repetition NITER, RESOR and the variables are printed in a 

specified position (IMON, JMON). The tables of the variables are printed 

before and after the continuation of the repetition. For printing within the 

continuation of the repetition, the variable INDPRI is used. The formula of the 

finite difference equations programmed is: 

 

Where: 

 

MPis the net outflow from the control volume. cP is used only as a trick 

that ensures stability, by the use of which the coefficients of ΦPremain finite, in 

case of a net outflow.  

 The symbols of the FORTRAN language are carefully chosen, so that 

there is a direct relationship in their expression with their counterparts in the 

finite difference equations: 

 

 

 or in the corrective speed formula: 
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 The following figure gives the cell (control volume) of the storage of the 

gradients (P, T, k, ε, and so on), with FORTRAN variables related to the 

dimensions/coordinates: 

 

 This figure, as well as the next two, is explanatory and the user will find 

in them great help in adopting TEACH-T for various problems. It should be 

noted that the gradient cell limits are located in the mid-range of the main grid 

nodes.  

 The following figure is explanatory for a typical U-speed cell: 

 

 Let’s note that the western limit of the cell is located in the mid-range of 

DXPWU(I) and similarly the eastern limit in the mid-range of DXEPU(I). The 

northern and southern limits are located in the mid-range of the distances NP 

and PS respectively. 

 The next figure shows the typical V-speed cell with FORTRAN 

variables: 
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 The northern limit of the cell is located in the mid-range of DYNPV(J). 

Similarly, the southern limit is located in the mid-range of DYPSV(J). The 

western and eastern limits are located in the mid-range of WP and PE, 

respectively. 

 Then, the structure and the functions of the various subroutines of the 

TEACH-T program are described. In general, each subroutine is subdivided 

into sections to facilitate the understanding of the entire program. The 

functions of the various parts of the main subroutine CONTRO are given 

below: 

Section 1:  The initial elements of the grid, the control parameters of the 

program, the constants of the problem and some other related elements are 

printed outside. 

Section 2: The calculations of the grid parameters, the preparation for the 

supply of the tables (through INIT) and the description of the defined limit 

values, as well as the preliminary printing of the initial variables are done 

here. 

Section 3: Prepares and checks the repetition and gives intermediate prints 

of NITER, RESOR, Φ(IMON, JMON) and the distributions of Φ (if NITER is an 

exact multiple of INDPRI). 

Section 4: The final print, the calculations of the shear stress coefficients, the 

normalization of the distributions and so on, are given here. 

 The following table gives the general structure of all the CALCΦ 

subroutines, except CALCP: 
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 The input and output of each of these subroutines is CONTRO. 

Section 1: Calculates the coefficients across the field, using the expressions 

of the total flow. These calculations are independent of the type of the 

problem.  

Section 2: PROMOD is called, to modify sources and limit coefficients, in 

order to capture the particular problem.  

Section 3: All the coefficients and the RESORΦ residual sources are 

calculated from Φ of the previous repetition.  

Section 4: LISOLV is called to apply the LBL method. 

 The CALCP subroutine is distinguished from the other CALCΦ 

subroutines. In Section 1 it has an additional feature. The absolute mass 

sources are accumulated and stored as RESORM. Residual sources for the 

P΄-equation are not calculated, because they do not provide us with useful 

information. The P΄equation is unlikely to take a unique form, because αi are 

unlikely to become zero. Therefore, no special precautions are taken in the 

introduction of “false” sources. For the CALCP subroutine there is an 

additional section, Section 5, for the calculation of the pressure and speed 

corrections. In the PROPS subroutine the fluid properties are calculated 

(thermodynamics and transfer, e.g. μeff, Γeffetc.). 

 The iterative LBL method is performed in the LISOLV subroutine, which 

has such an arrangement that resolves along the lines N-S with W-E scans. If 

desired, LISOLV can resolve along the lines W-E with N-S scans. The most 

important elements of LISOLV is the PHI(I, J) table, which contains the 

calculated variables and the indicators of the position ISTART and JSTART. 

The INIT subroutine calculates in Section 1 the grid coordinates, the 

distances of the mid-ranges between the nodes, the cell dimensions. R(J) is 

set equal to 1.0, if INDCOS = 1 (flat flow), or equal to Y(J), if INDCOS = 2 

(axis-symmetric flow). In Section 2 the initial values of the dependent 

variables of the tables are defined.  
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 The printing of the dependent variables of the tables is performed by 

the PRINT subroutine. The special elements are: PHI(I, J): table to be 

calculated; X(I), Y(J): coordinates of storage positions; HEAD: table 

containing the order of the names of the contained variables; ISTART, 

JSTART: initial values of the indicators I, J. 

 In general, the TEACH-T computational program is written in such a 

way that it is easy to understand and many of its subroutines (except 

CONTRO, PROPS and PROMOD), do not need modifications for other types 

of problems.  
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CHAPTER 6 

 

CONVERSION OF DIFFERENTIAL EQUATIONS INTO 

FINITE DIFFERENCES AND SYMBOLISM OF VARIABLES 

IN PROGRAMMING LANGUAGE 

 

6.1 Integration of the Differential Equations of the TEACH-T 

Variables and their Symbolism in FORTRAN Language 

 

 The control volume of the dimensions dx, dy, dz of the figure is 

considered: 

 

 Let’s suppose that in the elementary volume dV a quantity expressed 

by the vector 𝐽enters 

 

 As this quantity passes through the volume dV, changes and exits as: 

 

 in the direction i. Then, for the same direction the change of the 

quantity J will be: 

(Change of the Ji) =   
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 If this quantity is reduced in the input surface, then the net outflow of 

this quantity for each direction separately will be: 

 

 This leads to a total outflow from the elementary volume of the quantity 

J: 

Outflow =  

Outflow / (volume unit) =  

 Let’s also assume that this quantity is of such nature that is kept 

constant. Then, the outflow of the quantity div𝐽will come (if it is not zero) from 

some other quantity J contained in the control volume dV or/and from some 

other source J within the volume dV. If the variable of 𝐽was made in time dt, 

then the requirement to maintain this quantity is expressed by the following 

differential equation: 

 

 where ρ: density of J in the volume dV. Sj:source J in the volume dV. 

The above equation is the general form of the conservation equations. Any 

conservation equation in physics can be transformed into this form. The 

continuity equation expresses the principle of the mass conservation, when it 

enters an elementary volume dV under a flow field of �⃗⃗� speed: 

(without mass source) 

 This equation in cylindrical coordinates takes the form: 

 

 In a constant 2-D flow this equation is converted into: 
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where 

 

 The momentum equations express the momentum conservation in any 

direction of space. Thus, there are three such equations that have a general 

form as follows: 

  

where:  momentum change in time. 

The convection term that expresses the net momentum 

outflow 

from the elementary volume dV. 

Diffusion term that expresses the momentum 

redistribution, 

due to viscosity forces. 

momentum source 

momentum conservation direction. 

 In cylindrical coordinates in 2D constant flow, this equation is written as 

follows: 

 

 In this form the momentum equation is used in the TEACH program. 

The term of the sources is expressed by the following relations: 

a) Momentum equation in the x-direction: 

 

b) Momentum equation in the y-direction: 
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 We accepted the flow as 2D, but we kept the speed w in the term: 

 

 In fact, this happens because the flow we have is axis-symmetric, as a 

result the speed of the coordinate φ is not only different at every point in a 

plane of calculations, but is also constant in any other plane of calculations. 

 That is, we can imagine a plane of calculations within the cylinder in 

which the speed w presents a distribution which it maintains for any other 

similar plane in the combustion chamber.  

 

 The numerical resolution of the differential equations in TEACH is done 

by converting them into finite difference equations (FDE) with the method of 

the control volumes. According to this method, the differential equations are 

completed in a fairly small control volume and are thus expressed in 

difference equations. Previously, the calculation space is analyzed in small 

control volumes. A typical control volume for the TEACH cylindrical 

combustion chamber is shown in the following figure: 

 

 The center of the control volume is the point P, while the neighboring 

centers of the neighboring control volumes are: W, E, N, S, H, L. The 

intersection points of the axes connecting these centers with P, with the 

surfaces of the control volume are, respectively, w, e, n, s, h, l.  
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 In the TEACH program, because we consider the field as axis-

symmetric, we do not examine the points H, L. We also consider that the 

control volume has an angle φ equal to one (φ = 1). Thus, we can see this 

volume in the plane, as shown in the following figure: 

 

 The control volume which in the program is symbolized by VOL, is 

equal to: 

 

 based on the view of φ = 1. We complete the differential equations not 

on surfaces dxdy, but in the volume dv, where: dv = r dφ dr dx, although we 

refer to a 2D flow and we use 2D equations. The integration of the differential 

equations eventually leads to the storage of all the variables (pressure, speed 

etc.) in the center of the control volume P. However, it has been proven that 

this can lead to computational errors, and especially to the definition of the 

term  in the momentum equations. For this reason a variant of the 

above method is used. The new method requires the use of different control 

volumes to complete the momentum equations in relation to a basic control 

volume. Thus, the speed u is calculated by completing the momentum 

equation in the x (or z) direction, in a grid of control volumes shifted opposite 

to this direction, i.e. to the left. Similarly, v is calculated in a downward shifted 

control volume. On the contrary, the pressure and other characteristic 

magnitudes of the flow, such as the density, the viscosity etc., are stored in 

the basic grid of P. The figures (6.1.1) and (6.1.2) show the shifted grids for 

calculating the speeds u and v by symbolizing their dimensions, according to 

the TEACH program. Some dimensions of the grids may give the impression 

that they are left over. This happens because the grids are located in the 

middle of the distances of the nodes P, N, S, E, W. We have, however, the 

option of choosing a non-uniform grid. Understanding the geometry of the 

grids is very important, in order to understand the integrations of the 

differential equations. In particular, attention must be paid to the 

complementary grids u, v of the grids v, u, respectively, and to how at the 

ends of the grids v, u speeds of a direction other than the one being 
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completed are located. Thus, in the grid of the u-speed, at its four ends, 

speeds v of the peripheral grids of type v are defined and vice versa.  

 

Figure 6.1.1 Control volume for the speed u. 

 

 

Figure 6.1.2 Control volume for the speed v. 
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Figure 6.1.3 Control volume for the pressure P, the densityρ, the viscosity μ. 

 The grids are calculated in the subroutine INIT, which undertakes the 

zeroing of all the variables which will be calculated in the continuation of the 

program and the calculation of the geometric sizes of the grids. Initially, a 

check is made for the value of the indicator INDCOS which determines the 

type of the coordinates to be used: 

 

 In case we have (CCS), the value of the spoke R(J) becomes one 

since here, instead of it, we have the distance Y(J). Before we proceed, 

however, we should say that the distances Y(J) and X(I) of the grid have been 

calculated at the beginning of the program. The horizontal position of P is 

determined by X(I) and the distance between the previous one in the grid P 

and the current one is defined by DXPW(I), while its distance from the next 

one is defined by DXEP(I). Therefore, if we define DXEP(I) as: 

DXEP(I) = X(I+1) – X(I) 

it is obvious that we will have: 

DXPW(I+1) = DXEP(I) 

 We also set values for the grid limit positions expressed on the axis x: 

(1) = first position, NI = last position. The limit values will obviously be: 

DXPW(1) = 0 and DXEP(NI) = 0 

 The same applies to the vertical distances DYNP(J) and DYPS(J) 

which become: 

DYPS(J+1) = DYNP(J) where DYNP(J) = Y(J+1) – Y(J) 

with limit values: 

DYPS(1) = 0, DYNP(NJ) = 0 

since we have defined on the axis y: (1) = first position, NJ = last 

position. 

 Having determined these distances from the figure, it is obvious that: 

SEW(I) = 1/2[DXEP(I) + DXPW(I)] 

with limit values: 
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SEW(1) = 0 and SEW(NI) = 0 

 Likewise, for the y-direction we will now have: 

SNS(J) = 1/2[DYNP(J) + DYPS(J)] 

with limit values: 

SNS(1) = 0 and SNS(NJ) = 0 

 Then, based on the figure (6.1.1), we calculate the grid geometry of the 

speed U. The figure shows: 

XU(I) = 1/2[X(I) + X(I – 1)] 

 In this way, we place the center P΄for the grid U in the middle between 

the points P and W. This is very important for the calculations of the 

momentum-continuity equations in the grid. Then, we calculate, as we did for 

the P-grid, the distances between the successive P points of the control 

volumes. Thus, it follows: 

DXEP(I) = XU(I + 1) – XU(I) 

DXPWU(I + 1) = DXEPU(I) 

The limit values will be: 

DXPWU(1) = 0 and DXPWU(2) = 0 

DXEPU(1) = 0 and DXEPU(NI) = 0 

 The following figure shows the above limit conditions: 

 

 From the figure (6.1.1) we can calculate: 

SEWU(I) = X(I) – X(I – 1) with limit value SEWU(1) = 0 

 In the V-grid (see figure (6.1.2)), it will be valid for the spokes RV(J) or 

YV(J) in CCS: 

RV(J) = 1/2[R(J) + R(J – 1)] 
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YV(J) = 1/2[Y(J) + (J – 1)] 

with limit value YV(1) = RV(1) = 0 

 In this way, the center of the V-cell is placed in the middle of the 

distance PS. Then, the spoke of the top line of the V-cell is calculated, which 

otherwise, would not be equal to R(J) based on the following relation: 

RCV(J) = 1/2[RV(J + 1) + RV(J)] 

with limit values: RCV(1) = R(1) and RCV(NJ) = R(NJ) 

 Thus, we can now calculate the vertical distances between the 

successive cells of type V, as we did for the horizontal distances in the U-cell 

as follows: 

DYNPV(J) = YV(J + 1) – YV(J) 

DYPSV(J + 1) = DYNPV(J) 

with limit values: 

DYPSV(1) = 0 and DYPSV(2) = 0 

DYNPV(NJ) = 0 

 Finally, we calculate some geometric coefficients for the u and v cells 

that there is no point mentioning here, since we will meet them when we need 

them below in completing the differential equations. 

 For the calculation of u (CALCU), the momentum equation is written 

again in the x-direction (or z): 

 

      I     II 

             Convection terms   Diffusion terms 

 Then, we complete each term in the control volume of the u grid 

Convection terms: 

 

(a) (b) 
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Line 2 at the point P refers to the magnitude  to be calculated. At 

P, ρis defined, but u is not defined. Thus, we need to get some average value 

for this. Due to the field geometry we will have: 

 

 Let’s not forget that u are stored only at the points (P΄, Ν΄, S΄, W΄). To 

simplify the calculations, the program in the subroutine INIT determines the 

geometric coefficient: 

 

therefore: 

 

or with speed indicators 

 

 The density at P is symbolized by DEN(I,J) so the term  will be 

equal to:  

 The convection speed u is none other than uP. The term  expresses 

the length between the lines 3-4 and according to the shapes of the grids is 

the term SNS(J). r again from the grids is RCV(J), so we can calculate the 

surface: 

AREAEW = SNS(J) RCV(J) 

 For simplification (according to the program) we set: 

GE = DEN(I,J) (U(I + 1,J) (1 – WFE(I)) + U(I,J)WFE(I)) 

CE = AREAEW GE 

as a result this term is written as follows: 

 

 where uP is the convection speed. In line 1, at the point W, where the 

other integral refers, things are exactly the same. The indicators are simply 

shifted one position to the left. Thus, while the term  remains AREAEW, 

the density ρw or DEN(I-1,J) and the speed uw is calculated as follows: 
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where: 

 

We set the coefficients: 

GW = DEN(I-1,J) (U(I,J) WFW(I)=U(I-1,J) (1-WFW(I))) 

CW = GW AREAEW 

as a result the integral is written as follows: 

 

where Uw is the convection speed. 

 

(a)                (b) 

a) The term  refers to the point n΄. Here this term cannot be 

defined at this point, since neither ρ nor v is stored at this point. Thus, we 

must necessarily set an average value for this term. Let’s see which points 

are around n΄: 

 

 We observe that the density is stored at the points N, P, W, NW, while 

the speed v at the points K, Λ. Therefore, the average value will be calculated 

based on these points. Based on the above it is obvious that the following 

expression is an acceptable average value of the quantity (ρV) at n΄. 

 

 The speed V can only be stored at the ends of the control volume of U. 

This magnitude with the program symbols is written as follows: 

0,25 [(DEN(I-1, J+1) + DEN(I-1, J)) V(I-1, J+1) + 

+ (DEN(I, J+1) + DEN(I,J)) V(I, J+1)]    (6.1.7) 
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 We repeat that in the figure (6.1.1) U(I,J) is stored at the point P΄, while 

V(I,J) at the point A, although the indicators are the same (The coordinates I, 

J do not refer to the same point, when expressing the positions of different 

magnitudes). In fact, we have a series of overlapping grids that each one of 

them has its own coordinates I, J. In the program there are the coefficients: 

 

 The term  obviously becomes SEWU(I), while the spoke r at the 

height of the line 4 is RV(J+1) and is directed to the speed V. Thus, we can 

set: 

AREAN = RV(J+1)SEWU(I) 

as a result the integral becomes: 

 

 The term 0.5 (GN + GNW) = CN is the term of the relation (6.1.7). It 

remains, therefore, to determine the speed u΄n. This speed, which is the 

convection speed, is defined at the points Ν΄ and P΄. Because the lengths 

Ν΄n΄and P΄n΄are equal, the average value of the speed u at n΄can be defined 

as: 

 

 In this way, the integral is written as follows: 

 

 In this integral the magnitudes are the same, except that the indicators 

are shifted one position downwards. Thus, the average value of the quantity 

is calculated based on the point Β΄and is: 

 

so, based on the program symbols, it is valid: 

GS = 0.5 (DEN(I, J-1) + DEN(I, J))V(I,J) 

GSW = 0.5 (DEN(I-1, J) + DEN (I-1, J-1))V(I-1, J) 
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 The magnitude  is SEWU(I), while the spoke r now refers to the 

line 3 and is symbolized by RV(J). Therefore, the integral is written as follows: 

 

where: AREAS = RV(J) SEWU(I). The speed U΄S is calculated similarly 

to U΄n as: 

 

 We also set GS = 0.5(GS+GSW). Thus, the integral finally takes the 

form: 

 

Diffusion terms: 

 

refers to the point P. There, the viscosity is defined as μP =  

VIS(I,J). The spoke r is expressed by the magnitude RCV(J), while  by 

the length SNS(J). It remains to calculate the term  u is stored at the 

nearby points P΄and Ε΄and therefore it can be written as: 

 

Setting AREAEW = SNS(J) RCV(J) and DE = (VIS(I, J) AREAEW)/ 

DXEPU(I) the integral takes the form: 

 

 We refer to the point W in a similar way, so we have: 

 

 

 We name DW = (VIS(I-1, J)AREAEW) /DXPWU(I) and it follows: 
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(a) (b) 

The magnitude  refers to the point n΄. Here, however, we cannot 

define the viscosity. So we get an average value for it with the help of the 

surrounding points N, NW, W, P. Thus, we will have: 

 

and with the program symbols: 

VISN = 0.25 (VIS(I,J)+VIS(I, J+1)+VIS(I-1, J)+VIS(I-1, J+1)) 

The term: 

 

 The term = SEWU(I) and r in the position where the above 

magnitudes are calculated is RV(J+1). We set: 

AREAN-RV(J+1) SEWU(I),  DN = (VISN AREAN)/DYNP(I) 

so the integral becomes:  

 The magnitudes are calculated similarly to the previous integral with 

the difference that they now refer to the point s΄. Thus, we will have: 

AREAS = RV(J) SEWU(I) 

 

We set: 

 

we find the average value of μ at Β΄. Finally, we set: 
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DS = VISS AREAS/DYPS(J) 

as a result the integral becomes: 

 

Source Terms: 

 According to the equation (6.1.4) the source terms for the momentum 

equation in this direction are: 

 

 A different method is followed to convert these terms into difference 

equations. Because these terms express sources within the control volume, 

they will also have a constant value inside it always in relation to its 

dimensions. Thus, we will convert the equations into FDE and then we will 

multiply the result by the control volume. Within this volume the density is kept 

constant at all times, since the flow is constant, resulting in divu = 0. Thus, the 

last term of (6.1.8) leaves. We can, therefore, have: 

 

The control volume is: 

VOL = RCV(J) SEWU(I) SNS(J) 

Thus, we have: 

 

 In the program DU(I,J) = AREAEW is set so this term is written as:

 

 

The term  or  is written: 
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and the other takes the form: 

 

These terms are described as DVDXN and DVDXS, respectively. Thus, 

finally we can have: 

 

This term is called SORCE2. 

 

Here r remain constant so they leave, while  are: 

 

which is called DUDXE. 

 

which is called DUDXW. Thus, we will have: 

 

Therefore, we have source terms: 

 

Composing the equations for CALCU, it follows that: 
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we set: 

 

Calculation of V(CALCV): 

 

  (I)convection terms  (II)diffusion terms 

Then, we complete each term separately, following the logic of CALCU.  

Convection terms 

 

(a)                     (b) 

a) On line 2, at the point e΄, the value of the convection magnitude (ρu) 

will be calculated as the average value at the surrounding points. The density 

ρ is stored at the points P, E, S and SE, while the speed u at the points K, Λ 

and therefore we can write: 
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The term ,while on this line, r = RV(J), so we can set: 

AREAEW = SNSV(J) RV(J) 

So finally with the program symbols we can write: 

 

 Because the points A, K were placed in the middle of the lines WP and 

PE respectively, the speed V at e΄is defined as follows: 

 

Thus, finally the integral takes the form: 

 

where CE = 0.5 (CE + GSW) AREAEW 

 The calculation for this term is similar, except that the indicator I 

becomes I-1. Thus, we will have: 

 

The speed V at W will be equal to: 

 

 and: 

 

 

 (a)                           (b) 

 We refer to the point P, 

where ρ is defined, so it becomes: 
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 On the contrary, V is not defined and it will take an average value 

between the points P΄ and Ν΄ at which it is also defined: due to the grid 

geometry it will be valid: 

 

 In the subroutine INIT the geometric coefficient has been calculated: 

 

so we can write VP in the following way: 

 

= SEW(I) while r at this point is R(J), so we immediately define the 

surface as follows: 

AREAN = R(J) SEW(I) 

Then we set GN = VP DEN(I,J) and 

CN = GN AREAN 

The convection speed V is also expressed by the equation: 

 

as a result it is defined as: 

 

 This term refers to the line 3 at the point S and is thus it is the same as 

the previous one by modifying J by one (J-1). Thus, we can have: 

PS = DEN(I, J-1) 

Here r is R(J-1), therefore the surface is equal to: 

AREAS = (R(J-1) SEW(I) 

The speed at S is written as follows: 

 

where: 
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and is defined in the subroutine INIT. 

We set: 

  and  CS = GS AREAS 

 The convection speed V is the same as that expressed by the 

equation: 

and thus the integral is 

written as: 

 

 

Diffusion terms: 

 

(a) (b) 

On line 2, at the point e΄, r = RV(J), the term  = SNSV(J), while the 

viscosity will be calculated as the average value of the surrounding values, 

since it is not stored at e΄, but at P, E, SE, S. Thus, it arises: 

 

We set AREAEW = RV(J) SNSV(J) 

The derivative  is calculated as follows: 

 

Setting: 

 

the integral will take the form: 
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 On line 1, at the point w΄, the calculation is the same as the position 

where I, I-1. 

 

The term  takes the form: 

 

Thus, we set: 

 

and the integral is written as follows: 

 

 On line 4, at the point P the viscosity μ is stored at P, so we set μP = 

VIS(I,J), while the spoke r = R(J) and: 

 

The term  is written as follows: 

 

We set: 

 

and it results in: 

 

Thus, the integral takes the form: 
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 On line 3 at the point S the calculation is the same as before, except 

that the indicator J becomes J-1. 

Thus, it will be valid: 

 

and 

 

as a result the integral is written as follows: 

 

Source terms: 

 According to the equation (6.1.5), the following terms are calculated: 

 

This result is multiplied by: 

 

when multiplied by the volume VOL, it will be: 

 

because we have set: 
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and: 

 

the magnitude: 

 

is set as: 

 

Thus, we finally have: 

 

Then: 

 

And the terms will be: 

 

Thus, we have: 

 

The term: 
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where the terms  are equal to: 

 

Thus, this term takes the form: 

 

If we name the first term we calculated (with W) SORCEW, it will be 

valid: 

 

We finally have: 

 

and by replacing their equivalents: 
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and finally there is the requirement for the production of the 

discretization equation: 

 

Calculation of the pressure P (CALCP) 

 There is no differential equation for calculating the pressure. For this 

reason, a special technique is applied. The momentum equations, the source 

terms, also contain the pressure terms of the formula  

 When these terms were expressed with the help of the finite 

differences, terms of the formula (Pa – Pb) appeared in the calculations, which 

cannot be calculated, since the pressure is not known. In general, the 

momentum equations require the knowledge of the pressure distribution. So, 

we assume that the pressure distribution is known and we symbolize it by P*. 

It is declared in the subroutine INIT and is set equal to zero for each point of 

the grid -P. Then, however, u and v that are calculated are incorrect since the 

terms are calculated incorrectly. At this point the continuity equation 

comes to our aid, which has no pressure terms, but only speed terms. So, we 

should somehow correct the speeds u, v so that they verify the continuity 

equation. This is achieved in the following way: 

 If we assume that the corrections of u, v, P, are symbolized as u΄, v΄, 

P΄. Then, it is valid: 

   Actual values of P, u, v. 

 In fact, all the previous calculations refer to the magnitudes p*, u*, v*. 

 All the momentum equations can be presented in the following general 

form: 

 This equation, if written for the actual values of the speeds and 

pressures, will take the form: 
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 If we do the operation (6.1.11) – (6.1.10), we will get: 

 

 The term , after many repetitions, will become very small, since 

eventually the speed corrections will be close to zero, therefore we can 

neglect it. Then, we will have: 

 

 To each point P two grids of type U and V correspond, as shown in the 

following figure. Thus, with the help of this relation we can calculate the 

corrections of all the speeds of the grid P.  

 

Figure 6.1.4 Grids of type U, V at the point P. 

 

 The terms Ai/αi have been calculated in CALCU and CALCV. In 

particular, in each calculation of the term  we had also calculated an 

area term (Ai) that we had named DU for CALCU and DV for CALCV. At the 

end of the subroutines the transformation takes place: 

DU = DU/AP,  DV = DV/AP 

 The terms AP are αi of the relations so they are written: 
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 The terms DU and DV are defined in the grids u and v, respectively, so 

the coordinates I, J, correspond to these grids. Setting indicators also in the 

pressures, based of course on the –P grid and symbolizing the corrections P 

according to the program as PP we will have: 

 

 In this way we managed to connect the pressure corrections with the 

speed corrections. To also calculate the speed corrections, we would need 2 

equations. It is therefore advantageous to simply calculate the pressure 

corrections and through them to calculate the speed corrections with the help 

of the relations (6.1.12) to (6.1.15). It remains, therefore, to find a relation that 

connects the speeds between them. This relation will be given to us by the 

continuity equation. We write this equation once again: 

 

 Now we complete it in the control volume of P and we will have: 

 

 We will now analyze each term separately, having previously placed 

 and  
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 Section (II) is a term which can be characterized as the source of the 

error of the correction calculations. Section (I) gives us the corrections. 

Because the only things that change in the previous relation are u, v, we will 

make a more general calculation with the help of the equation (6.1.17). This 

term is written as follows: 

 

and based on what we have done so far, it is converted into FDE as 

follows: 

 

  Constant  Constant    (6.1.19) 

The second term is written as follows: 

 

and based on the analysis we have determined we will have: 

 

 We can now determine the source term and the corrective section: 

Source term: 
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 From the equation (6.1.19), setting the speed V of the grid –V, we will 

get: 

 

 We do the same for the equation (6.1.20) and we have: 

 

Correction term: 

 In (6.1.18) we set the terms of the corrective speeds as calculated in 

the equations (6.1.12-6.1.15) and we get: 

 

 In the equation (6.1.20) the corrective terms of the speeds are replaced 

and it follows: 

 

 Thus, if we compose all these terms, we will have: 

 

where: 

 

 Thus, we came up with a form similar to the one in which we have 

brought the other equations, so that it can be solved by the TDMA method, in 

the same subroutine (LISOLV). After the subroutine CALCP calculates the 

corrections PP(I,J), it finally corrects the speed values. According to (6.1.12-

6.1.13) for the speed V, we will write: 
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 According to (6.1.14-6.1.15) the speed V will be equal to: 

 

 The pressure will be calculated with the help of the corrective factor 

PP(I,J) not linearly, but with the help of the under-relaxation coefficient URFP. 

To do this, we also need a reference pressure. This is called PPREF and 

according to the program it expresses the pressure correction at the point 

(IPREF, JPREF) = (NJM1,2) where NJM1 = NJ-1 with NJ the end of the y-

direction of the calculation grid. In this way the correct (corrected) pressure 

will be equal to: 

 

 Once this is done, the corrections PP(I,J) become zero and the 

program returns to its main part. 

Calculation of the speed W (CALCW): 

 We will now write the momentum equation in the direction φ, where the 

speed is w: 

 

 In cylindrical coordinates this becomes: 

 

(1) Convection terms 

(2) Diffusion terms 

Convection terms: 
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 The calculation will be done on the grid of the point P. If the flow was 

3D (net), then it would be calculated in a shifted grid in the φ-direction. The 

projection of this hypothetical grid on the plane gives us the P-grid: 

 

         (a)              (b) 

 a) This term wants the density at the point n, where it is not stored. 

Thus, we get its average value between the points N, P, where it is stored: 

 

 At n, the speed V is defined as V(I,J+1). Thus, it is valid: 

 

 w will be equal to: 

 

 The term 

 

and 

 

since it concerns the speed V at n. 

Thus, we have the term: 

 

We set: 

CN = GN AREAN 

and the integral takes the form: 

 

 b) For this term the same are repeated, but with the indicator J-1 in the 

place of J: 
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Surface: 

AREAS = RV(J) SEW(I) 

Speed: 

 

setting: 

CS = GS AREAS 

we will get the integral: 

 

 For the second convection term it is valid: 

 

  (a)          (b) 

 a) Here we will have: 

 

and: 

 

Thus, setting: 

 

 b) Similarly, we will also have here: 
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and: 

 

Thus, setting: 

CW = GW AREAEW 

we will get: 

 

Diffusion terms: 

 

  (a)           (b) 

 a) Here the terms will be equal to: 

 

and: 

 

therefore it is valid: 

 

We set: 

 

thus the integral is written: 
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 b) Here, similarly, the terms are equal to: 

 

and: 

 

therefore it is valid: 

AREAS = RV(J) SEW(I) 

if we set: 

 

and 

 

we will get for the integral: 

 

 For the second diffusion term it is valid: 

 

 a) These terms take the form: 

 

We set: 
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and the integral becomes: 

 

 b) Similarly we will also have here: 

 

and: 

 

 

and setting: 

 

the integral will become: 

 

 The source term for this equation will be equal to: 

 

 This form can be simplified as follows: 
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 With the same handling, as for the u, v-speeds, we will also have here: 

 

 This term does not exist in the Cartesian coordinate system (INDCOS 

= 1). 

 

and: 

 

 Adding these terms, we calculate the source. Then, we set: 

Source = (Sum) X VOL 

 Thus, finally, the following will apply to the calculation of the w-speed: 

 

This expression eventually becomes: 
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Finally, we set the known coefficients: 

 

Turbulence model (CALCTE, CALCED) 

 The turbulent flows are non-constant and a complete description of 

them would require resolving the relevant equations. But because the vortex 

scale is about 10-3 sec, the calculations would be anti-economic. A practical 

solution is to convert the governing equations into equations of average time 

values, model the occurring turbulent terms and solve them. The model used 

in TEACH is that of the two equations k-ε, where k the turbulent kinetic energy 

and ε the scattering rate (degeneration) of the turbulent kinetic energy. The 

active viscosity is obtained from the relation: 

 

 The equations of these two variables are as follows in general form: 

 

where Φ becomes k and ε, while the other coefficients are equal to: 

 

The source term is, respectively: 

 

and: 
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where the common coefficient G is equal to: 

 

 The last term exists only in the polar cylindrical coordinate system 

(where INDCOS = 2). The values of Ci, σeff,Φ, are calculated basically 

experimentally and in TEACH they have the following values: 

  Magnitude             Symbol 

 

 k is symbolized as TE(I,J) and ε as ED(I,J). The calculation grid is P. 

The integrations are executed with respect to the general variable Φ, since 

the equations of  k, ε are the same. The convection terms of the differential 

equation are: 

 

 We analyze each one separately: 

 

 

    (a)        (b) 

 a) We have calculated terms of this form once again, so we proceed 

without detailed explanations. 

 

so we set as a surface: 

AREAEW = RCV(J) SNS(J) 
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Thus, setting 

CE = GE AREAEW 

the integral will be written as: 

 

 b) Similarly, for this term it will also be valid: 

 

and: 

 

therefore we have again AREAEW and still: 

 

Then, CW = GW AREAEW and the integral takes the form: 

 

 b) The next convection term is equal to: 

 

which, when completed, will give: 

  

   (a)      (b) 

 a) The analysis of these terms is the same as before. 

 

and: 
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therefore the surface is equal to: 

 

 Finally, we set CN = GN AREAN and thus the integral takes the form: 

 

 b) Similarly, it will also be valid here: 

 

and: 

 

so the surface is equal to: 

 

We set CS = GS AREAS and thus the integral is written as follows: 

 

 The diffusion terms are: 

 

Γeff = μeff/σeff,Φ = μ/Pr , where PR becomes for Φ = k → PRTE and for Φ 

= ε→ PRED. 

 We analyze each term separately: 

 

    (a)            (b) 
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 The term μ/Pr is complex, since it contains μ which changes at the 

ends of the control volume and Pr which is constant throughout the calculation 

space. Thus, the following will apply: 

 

and: 

 

thus, the surface is equal to: 

 

We set: 

 

and: 

 

Thus, the integral takes the form: 

 

 b) Similarly for this term it will also be valid: 

 

and: 

 

so the surface becomes AREAEW = RCV(J) SNS(J) 

 

Thus, we set: 

 

so the integral will be: 
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 a) Similarly to the first term it will be valid: 

 

and: 

 

so we have the surface AREAN = RV(J+1) SEW(I) 

 

We set: 

 

therefore the integral will be: 

 

 b) Similarly it will also be valid here: 

 

We set: 

 

therefore the integral will be: 

 

Source Terms: 
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 In the source terms the basic parameter is G. We will calculate each 

term separately: 

 

 

 The term Un will be calculated as the average value of the values at the 

4 neighboring points 1, 2, w, e (see figure 6.1.3), while Us at the 4 neighboring 

points w, e, 3, 4. Thus, we have: 

 

 As before, the term Ve will be calculated as the average value of the 

speeds at the 4 neighboring points n, 3΄, 4΄, s. Vwwill be calculated with the 

help of the neighboring points 1΄, 2΄, s, n. Thus, we have: 
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 The term V(I,J)/RV(J) is set as VDR, so this term is written as follows: 

 

μP →this term, because it is stored at P, always takes the value VIS(I,J). 

Finally, all these terms are added and multiplied depending on the volume: 

 

in order to give us the term G which in the program is calculated once 

in CALCTE with the name GEN(I,J). All the terms are composed as follows: 

 

This expression is written as follows: 

 

 

Finally, we set the terms: 

 

 LISOLV is then called, to calculate TE(I,J) in CALCTE and ED(I,J) in 

CALCED. Finally, the correction of μ through ε, k, according to the relation 

(6.1.23), remains. This is done in the subroutine PROPS which, when the 

logic indicator INPRO is true in each scan, is called upon to modify the values 

of the density, the viscosity and the flow characteristics. Under the heading 

VISCOSITY the following are done: the old value of the viscosity is stored in 

the variable VISOLD. 

 If the calculated value of ED(I,J) becomes zero, it will cause an error 

(run time error) since it is in the denominator in the relation (6.1.23). 

Therefore, a check is made for its value. If it is equal to zero, the viscosity 

takes the predetermined initial value VISCOS = 1,9 x 10-5. 
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   Turbulent viscosity        laminar flow 

viscosity 

 With the under-relaxation coefficient URFVIS the viscosity value finally 

becomes: 

 

 As we saw in our analysis, all the differential equations end up in a 

form, such as the following: 

 

 where the term Σjindicates the sum at the nodes N, S, E, W of the grid 

corresponding to the control volume in which we do the integration. In all the 

differential equations there was a source term which we symbolized by SΦ 

and which we completed in the control volume in a different way than in the 

other parameters. In fact, we did linearization of the source in the general 

form. 

 

 In the subroutines CALCx the terms Sp and Su are symbolized as 

SP(I,J) and SU(I,J) respectively. The integration now takes the form: 

 

 The term Sp does not often appear and only Su exists, while in other 

cases both appear.  

 The term Sp is contained inαp
Φ, which is equal to: 

 

 In the program the terms αj are the terms AN, AS etc. that we defined 

at the end of each integration.  

 In order to have uniformity on the line of the CALCx subroutines in 

cases where there is no term SP
Φ, the program sets as SP

Φ the term: 

 



97 
 

while at the same time it sets as a source term of type Su
Φ the term: 

 

 In this way, the two terms are cancelled algebraically, leaving the 

actual source terms. In any case, however, because the term SP
Φ is 

subtracted from the sum ofαj, it is possible to haveαP< 0. This should not be 

the case under any circumstances, as most physical processes do not have a 

source term dependent on the magnitude Φ with positive slope. This would 

lead to instability, since an increase in ΦP would lead to an increase in the 

source term SP
Φ, which of course leads to an increase inΦP, with the result 

that, if there is no mechanism to abductΦP, unrealistic processes take place.  

 For this reason in each CALCx a check is made for SP so that, if it has 

a positive value, it is zeroed. The linearization of the source terms 

presupposes the existence of an iterative process for the correction of the 

values. A better approach is achieved by under-relaxing the terms Su
Φ by 

means of an under-relaxation coefficient. For this reason, in CALCx Su
Φ is set 

as follows: 

 

 where URFx is the under-relaxation coefficient, which takes different 

values, depending on the case (URFU, URFV etc.). In every calculation 

process there are divergences, which, when they are small enough, give us 

the correct results. In the subroutines CALCx the divergences are defined by 

the characteristic RESORx and are: 

 

 This variable is called remainder and is summed for all the grid points. 

Its reduction also shows us the convergence of the iterative calculation 

process. 

 On each side of the control volume we have a sum of quantities Φ, due 

to diffusion and convection. Let’s take, for example, the end e of a control 

volume. 
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 The calculation of the integrals at e always gives us a term of the form: 

 

 This term expresses the net reduced flow rate through the wall e due to 

diffusion and convection. We can write it as follows: 

 

 If we set: 

 

we can write more simply: 

 

 If A and B are negative, then, when ΦP increases, Jedecreases and, 

when ΦE decreases, JEalso decreases. This result is wrong and arises, 

because we ignored the effect of ue onΦΕ. It should, therefore, be valid: 

 

which means: 

 

If we assume that 0,5CE is positive, then we can write: 

 

 For (6.1.24) to be valid, it is enough to set in the position of DE the 

maximum of DE, |0.5CE|. If we set DE, our basic relation arises, while, if we 

set |0.5CE|, we have (a) positive and (b) zero. If again |0.5CE| is negative, 

then it will be valid: 

 

which is the same as above. This is what the subroutines CALCx of 

TEACH do, where with commands of the formula: 
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 they ensure that relations like that of (6.1.25) will be valid. In other 

cases, the comparison is more complex. From the calculations we made in 

CALCU we have, for example: 

 

where, according to what we have said, the following should be valid: 

 

The relation (6.1.26) is satisfied in the following way: 

 

and finally we demand: 
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CHAPTER 7 

 

IMPLEMENTATION OF THE COMPUTATIONAL  

PROGRAM 

 

7.1 Implementation of the Computational Program 

 

 The first step in implementing the computational program for a specific 

problem is to determine the resolution area and the grid. 

 

 The resolution area is limited by the input plane, the cylindrical wall 

(outlines), the axis of symmetry and the output plane. The calculations start 

from the plane of STEP. The grid used may be uniform or gradually increasing 

with an expansion coefficient EPSX (1.2 or smaller), in order to allow the grid 

to be concentrated in the recirculation or near the wall. 

 The handling near the wall must be careful in introducing the limit 

conditions (subroutine PROMOD). 

 On the axis of symmetry the total vertical flow of the variables is equal 

to zero . At the input, uniform variables are defined for all the 

variables: 

 

 where i = turbulence intensity coefficient and: 

 L = λ D/2 where λ = length scale factor 
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 In the equation P΄, however, the output speeds are required for the 

mass conservation. The speeds are obtained at the output with the 

assumption of zero slope in combination with the application of the total mass 

balance in the entire flow solution area.  

 In Section 0 of the subroutine CONTRO, where the program is mainly 

controlled, DIMENSION, COMNON elements and, also, the scan numbers 

(NSWPΦ) of the repetition lines are declared. Another important parameter 

identified here is the maximum dimensions of the Φ-tables (IT, JT).  

 Section 1 defines the control indicators and the parameters related to 

the grid, the selection of the equations to be resolved, the determination of the 

values of the fluid properties, the turbulence constants, the limit values and 

the parameters for the control of the program and the printing. The term “grid 

determination” defines INDCOS, NI, NJ, the cylinder spoke RLARGE and the 

cylinder length of calculations ALTOT. Also, NI = NJ = 30 define a 30x30 grid 

(give 28x28) cells. RSMALL is the spoke of the small diameter of STEP. The 

grid coordinates X(1), Y(1) are defined as symmetric of X(2) and Y(2), 

respectively.  

 In Section 1 the parameters INCALΦ are declared, to select the 

equations to be resolved (u, v, p΄, k, ε and μ). The coordinates of the position 

(IPREF, JPREF) for the pressure determination, the printing parameters 

MAXIT and the under-relaxation coefficients URFΦ are given.   

 In Section 2 of CONTRO the initial values (zero) are determined for 

the variables Φ and the geometric quantities are defined through the 

subroutine INIT. The initial fluid properties are also calculated through 

PROPS. The subroutine INLET is called and then the input values and the 

improved initial distributions of the variables are determined. The values 

within the flow field are equalized with the input values with the speed U and 

the mass flow rate (FLOWIN) is estimated. The initial information and the 

initial fields Φ are printed and the normalized quantities of the mass and the 

momentum sources are calculated. The mass sources are normalized with 

FLOWIN and the momentum sources with XMONIN(=FLOWINxUIN). 

 In Section 3 of CONTRO the iterative “LOOP” of the achievement of 

“CALL” in the different subroutines Φ is arranged and care is taken for 

intermediate prints in multiple of the INDPRI repetitions. Also, the control of 

the termination of the calculation process based on SORCE takes place.   

 In Section 4 the final values of the tables Φ are printed via the “CALL” 

command of the subroutine PRINT. 
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 In Section 1 of the subroutine INIT the calculations of the coordinates 

of the position of the speeds (XU(I), YV(J)), the dimensions of the cells 

(SEW(I), SNS(J), and so on) are done. 

 In Section 2 the variables are given the initial zero values apart from 

DEN(I,J) = DENSIT and VIS(I,J) = VISCOS. 

 The subroutine PROPS calculates the fluid properties (hereμeff). The 

exchange coefficients μeff/σkand μeff/σε are calculated in CALCTE and 

CALCED respectively (σk→ PRTE, σε→ PRED). 

 The structure and the indexing of the subroutine CALCU is examined 

to find details for all the subroutines CALCΦ. GN, GS etc. are the mass flows, 

CN, CS etc. and DN, DS etc. represent coefficients of transfer and diffusion, 

respectively. SMP represents the local mass production MP and the “hybrid” 

difference method is executed through the functions AMAX1(). The complete 

source of the finite difference equation is assembled, since the subroutine 

MODU is called in PROMOD for the necessary source modifications at the 

limits etc. It should be noted that prior to LISOLV for the application of the LBL 

method, indirect under-relaxation is performed by modifying the finite 

difference equation coefficients. 

 The introduction of the limit conditions is done in PROMOD by 

modifying the appropriate coefficients. Consequence of the “upper wall” is the 

introduction of shear force along the cylindrical wall. The procedure followed 

is the selection of an appropriate shear equation in accordance with y+ , the 

calculation of τw (TAUN(I)) and its introduction by SP(I,J). Usually, the shear 

effect is removed, by setting AN(I,J) = 0. 

 The “west wall” and the “axis of symmetry” are treated by setting the 

“vertical flows” equal to zero. We handle the output speeds (U(NI,J)) with a 

zero degree view in combination with the mass balance. The handling of the 

V-momentum equation is similar to that of the U-momentum, except that the 

calculations are now made for the “west wall”.  

 In the subroutine PROMOD modifications are made for the k-equation, 

setting the vertical flows on the wall equal to zero and adjusting the production 

term (GENCOU). The practice of the “zero slope” on the axis of symmetry 

with regulation of GEN(I,2) is used. 

 ε is determined at the adjacent nodes of the wall by the source 

linearization method (GREAT =1030 in CONTRO) and on the axis of symmetry 

the vertical flow is set equal to zero.  

 The subroutine PROMOD plays a very important role in the program, 

because there the sources and the limit conditions are modified, in order to 

adapt to the particular problem. It is divided into Sections, each of which has a 
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special variable Φ, starting from ENTRY and ending in RETURN. The points 

of the beginnings have been named MODΦ and Φ are the relevant variables 

(U, V, P and so on). 

 The subroutine LISOLV performs the repetitions of LBL, scanning in 

the direction W-E. The coefficients of the iterative relation are assembled 

along the line N-S and the iterative relation is then used to calculate Φ. 

 The tables of the variables, the coordinates and the corresponding 

indicators are printed by the subroutine PRINT, as well as the names of the 

tables. The tables of the variables PHI(I,J) are printed for the entire field from 

(ISTART, JSTART) to (NI, NS) of the coordinates X(I), Y(J), as well as the 

labels (HEAD) of each table (PHI(I,J)). 
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ΣΥΜΠΕΡΑΣΜΑΤΑ 

Στο πλαίσιο της παρούσας διπλωματικής εργασίας μελετήσαμε το θέμα 

της ρευστομηχανικής και πιο συγκεκριμένα το πρόγραμμα προσομοίωσης 

teach-t. Αυτό μας βοήθησε να εντρυφήσουμε στους τεχνικούς όρους της 

ειδικότητας στην αγγλική γλώσσα και τον τρόπο μετάφρασης ενός εγχειριδίου 

από την ελληνική στην αγγλική γλώσσα. Η όλη διαδικασία αποτέλεσε μια 

εποικοδομητική ενασχόληση, τόσο με το αντικείμενο της υπολογιστικής 

ρευστομηχανικής, όσο και με την καθαυτό διαδικασία της μετάφρασης, η 

οποία αν και αρκετά δύσκολη λόγω των ειδικών όρων και τύπων, κέντρισε το 

ενδιαφέρον μας και μας βοήθησε στο να εμπλουτίσουμε τις γνώσεις μας. Η 

μετάφραση είναι κυριολεκτική, ακολουθήθηκε δε η διάταξη του ελληνικού 

συγγράμματος, σε μια προσπάθεια να μην ξεφύγουμε από το ύφος και το 

επιστημονικό περιεχόμενο του μεταφραζόμενου συγγράμματος. Εν 

κατακλείδι, ελπίζουμε ότι η παρούσα διπλωματική εργασία θα φανεί χρήσιμη 

σε φοιτητές και σε συναδέλφους μηχανολόγους μηχανικούς, καθώς επίσης και 

σε δυνητικούς φοιτητές ERASMUS που θα τους βοηθήσει να ασχοληθούν με 

τον συγκεκριμένο τομέα στην αγγλική γλώσσα.  
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