ПТYХIAKH ЕРГАЕIA

OIKONOMOTEXNIKH MEAETH ГIA THN КАТАГКЕҮH @EPMOKHПIOY 1 ェТРЕММАТОГ ГІА ПАРАГЛГН ПОАААПИАЕІАЕТIKOY YИIKOY

ANTQNIADHE KYPIAKOL

ПРОАОГОГ

 E $\lambda \lambda \alpha ́ \delta \alpha \varsigma$.

 $\mu \varepsilon \lambda \varepsilon ́ \tau \eta$.

Па́ $\uparrow \rho, 2018$
Avt $\omega v i \alpha ́ \delta \eta \varsigma ~ K u p ı o ́ k o s ~$

ПЕРІАНЧН

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \mu \tau \alpha \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma \tau \eta \varsigma \pi \rho о \alpha v \alpha \varphi \varepsilon \rho \theta \varepsilon i ́ \sigma \alpha \varsigma \mu \varepsilon \lambda \varepsilon ́ \tau \eta \varsigma$.

NEEEIL KAEIDIA

- Өєриоки́ $\pi ь$
- Под入ал $\lambda \alpha \sigma \iota \alpha \sigma \tau \iota к o ́ ~ v \lambda ı к o ́ ~$

ПEPIEXOMENA

ПРОАОГОГ ．
ПЕРІАНЧН ii
КE EEIL K $\Lambda E I \Delta I A$ ii
ПEPIEXOMENA iii
ЕІІАГЛГН 1
KEФAへAIO 1°－ГENIKO MEPO乏 2
1．1．Толо日в σ í α 3
1．2．Еүкато́бт $\alpha \sigma \eta$ 5
1．3．इкото́ каı тюо́тоц $\lambda \varepsilon ı \tau о и \rho \gamma i ́ \alpha \varsigma ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v ~$ 6
1．4．А ξ юлоі́ $\sigma \eta ~ Ө \varepsilon \rho \mu о к п \pi i ́ o v ~$ 6
 7
 8
 8
 9
1．4．8．$\Delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \alpha \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s$. 11
КЕФАААIO 2°－KATAइKEYAミTIKA KAI $\Lambda E I T O Ү Р Г I K A ~ X A P A K T H P I \Sigma T I K A ~$ MONA \triangle AL 12
2．1．$\Sigma \kappa \varepsilon \lambda \varepsilon \tau о ́ \varsigma ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v$. 13
2．2．Ү $\lambda_{1 \kappa \alpha ́} \kappa \alpha ́ \lambda \nu \cup \eta \varsigma$. 15
 15
2．2．2．К $\alpha \lambda \nu \psi \eta ~ \pi \rho о \sigma о ́ \psi \varepsilon \omega v ~ к \alpha ı ~ \pi \lambda \alpha і ̈ v \omega ́ v ~ \pi \lambda \varepsilon \varepsilon \cup \rho \omega ́ v . ~$ 15
2．3．Өє $\varepsilon \varepsilon \lambda i ́ \omega \sigma \eta$ катабквиๆ́ร 16
2．4．इv́бтๆ $\mu \alpha \varepsilon \xi \alpha \varepsilon \rho 1 \sigma \mu о v ́$ 16
2．4．1．Фибъкó бט́бтп $\mu \alpha \varepsilon \xi \propto \rho \imath \sigma \mu$ ои́ 16
2．4．2．$\Delta v v \alpha \mu ı к o ́ ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \varepsilon \xi \alpha \varepsilon \rho ı \sigma \mu о v ́ ~$ 16
2．5．इv́ $\tau \uparrow \mu \alpha$ סробıб μ ои́ 19
2．6．इv́бтๆu $\theta \dot{\varepsilon} \rho \mu \alpha v \sigma \eta ร$ 21
2．7．Өєриокоиртívєऽ бкíaбпऽ 23
 25
2.9 Ө人́ $\lambda \alpha \mu$ оऽ $\pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma$ 27
$2.10 \Sigma \pi \alpha \rho \tau \iota \kappa \eta ́ \mu \eta \chi \alpha \nu \eta$ 29
 @ЕPMOKHПIAKH工 MONA \triangle Aइ 31
3.1. Aסعıoסótๆбף 32
3.2. Елєvঠvú́vo кєча́ $\lambda \alpha ı$ 32
3.3. $\Delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \kappa \alpha \tau \alpha ́ ~ \varphi о \rho \varepsilon i ́ ̧ ~ \kappa \alpha ı ~ \sigma ט v \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon ́ \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s ~$ 33
КЕФАААIO 4° - OIKONOMIKA $\Sigma T O I X E I A ~ П А Р А Г \Omega Г Н \Sigma ~$ 37
इYZHTHLH 41
ГҮМПЕРАГМАТА 42
ВІВАІОГРАФІА 43
ПINAKE Σ
 12
 13
 15
Пívaкац 4. इóvтоноı каı $\sigma \tau \alpha \theta \varepsilon \rho о$ í $\chi \rho$ óvoı $\pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma$ 32
 40
 40
Пívaкац 7. Ко́бтоц $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~-~ Т \varepsilon \lambda ı к о ́ ~ к \varepsilon ́ \rho \delta о \varsigma ~$ 43

ЕІГАГЛГН

 $\kappa \alpha \lambda \lambda ı \varepsilon \rho \gamma \eta \tau \dot{v}$. Н $\mu \varepsilon ́ \theta o \delta o \varsigma ~ \alpha v \tau \eta ́ ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \sigma u ́ \gamma \chi \rho о \nu \varepsilon \varsigma ~ \theta \varepsilon \rho \mu о к \eta \pi ı \alpha \kappa \varepsilon ́ \varsigma ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma, ~ \alpha ́ \rho \tau ı \alpha$

KEФAAAIO 1^{0} - ГENIKO MEPO』

1.1. Tоло日とбía

 Г $\lambda \alpha$ ט́коv, о́ $\pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha \iota ~ \sigma \tau \iota \varsigma ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \alpha \varepsilon \rho о \varphi \omega \tau о \gamma \rho \alpha \varphi i ́ \varepsilon \varsigma . ~$

Eıкóva 2. Aєро甲ютоүраюí $\alpha \gamma \rho о \tau \varepsilon \mu \alpha \chi i ́ o v(\Pi \eta \gamma \eta ́: ~ G o o g l e ~ m a p s) . ~$

 $\mu \varepsilon \lambda \lambda о v \tau \iota \kappa \varepsilon ́ \varsigma ~ \varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon \iota \varsigma \tau \eta \varsigma \mu о v \alpha ́ \delta \alpha \varsigma$.

 μ ои́ $\delta \alpha \varsigma$.

1.2. Еүкато́бт $\alpha \sigma \eta$

 $\mu \varepsilon \gamma \alpha ́ \lambda о ~ \sigma \kappa і ́ \alpha \sigma \tau \rho о ~ \gamma ı \alpha ~ \tau \eta v ~ \sigma \kappa \lambda \eta \rho \alpha \gamma ต ́ \gamma \eta \sigma \eta ~ \kappa \alpha l ~ \varepsilon ́ \kappa \theta \varepsilon \sigma \eta ~ \tau \omega v ~ \pi \alpha \rho \alpha \gamma о ́ \mu \varepsilon v \omega v ~ \varphi \nu \tau \alpha \rho i ́ \omega v . ~$

 к $\alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta ́ s ~ \theta \alpha \alpha \nu \alpha \lambda v \theta$ ov́v $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \eta ~ \varepsilon v o ́ \tau \eta \tau \alpha . ~$

Eıкóva 4. $\Sigma \chi \varepsilon \delta \iota \alpha ́ \gamma \rho \alpha \mu \mu \alpha$ в $\gamma \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v ~ \kappa \alpha ı ~ \sigma \kappa ı \alpha ́ \sigma \tau \rho о v . ~$

 $\sigma \nu \mu \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota ~ \varepsilon \pi о \chi 1 \alpha \kappa \alpha ́ ~ \varphi v \tau \alpha ́$.

 $\chi \rho o ́ v o$ ($\pi \chi$. тоно́та $\theta \varepsilon \rho \mu о к \eta \pi i ́ o v)$.

1.4. А ξ ıолоі́ๆбๆ $Ө \varepsilon \rho \mu о к \eta \pi i ́ o v$

 $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́$ тous.

 боүкєкрцц́vตข 甲итஸ́v．

Пívakas 1．Протеıvóи\＆va vßpídıa каı лоикı入ís	
To $\mu \dot{\alpha} \tau \alpha$ Solanum lycopersicum	Troy F1，Bobcat F1，Ismini F1，Mirsini F1，Optima F1， Strombolino F1，Briscolino F1，ACE 55 VF．
Пıлері́́ Capsicum annuum	Bounty F1，Kaptur F1，Potomac F1，Zohar F1，Ariosto F1，Rubistar F1，$\Sigma \tau \alpha 0 ́ \rho o s ̧ V$ V．
Meえıѓ̧̛́va Solanum melongena	Tasca F1，Vernal F1，Megal F1，Bonica F1，Karatay F1， $\Lambda \alpha \gamma \kappa \alpha \delta \alpha ́$ VF，Black Beauty VF，White Beauty VF， Тбакळ́vas VF．
Ayroúpı Cucumis sativus	Baboo F1，Baby F1．
Kодокúधı Cucurbita pepo	Ortano F1，Clarion F1，Squash（Suha）F1

 $\alpha \gamma о \rho \alpha ́$.

Пívakas 2．Протe	va ußpífid kol лоик入へís
\ázovo Brassica oleracea	Landini F1，Banner F1，Doranna F1，King F1，Red dynasty F1，Fresco F1，Excalibur F1，Maк\＆δ ovías VF （ $\mu \varepsilon \sigma о \pi \rho \dot{́} \mu о / \mu \alpha \lambda \alpha к о ́)$.
Мтро́кодо Brassica oleracea var． italica	Naxos F1，Parthenon F1，Marathon F1，Violet Queen F1，Varmona F1，Violetto VF．
Kouvovaidi Brassica oleracea convar．botrytis	Cartier F1，Amerigo F1，Abruzzi F1，Freedom F1， Hispalis F1，Charif F1，Snowball A VF．
Паv亢Ц́ápı Beta vulgaris	Detroit 2 F 1.
Mapoú入ı Lactusa sativa	Linoy F1，Musena F1，Sivna F1，Starfighter F1， Robinson F1，Redino F1，Zephyros F1．

 $\varepsilon \pi о \chi ı \kappa \alpha \dot{\alpha} \kappa \alpha \iota ~ \pi о \lambda v \varepsilon \tau \eta ́ ~ \kappa \alpha \lambda \lambda \omega \pi \iota \sigma \tau \iota \kappa \alpha ́ \alpha ~ \varphi v \tau \alpha ́$.

 elegans), $\beta 10 \lambda \varepsilon ́ \tau \alpha ~(V i o l a ~ o d o r a t a), ~ \sigma \varepsilon \lambda o ́ \zeta ı \alpha ~(C e l o s i a ~ c r i s t a t a ~ \& ~ C e l o s i a ~ a r g e n t e a), ~$ $\sigma \alpha ́ \lambda \beta 1 \alpha$ (Salvia splendens), $\pi \rho \dot{\mu} \mu$ ои $\lambda \alpha$ (Primula acaulis), ка $\lambda \varepsilon ́ v \tau о \cup \lambda \alpha ~(C a l e n d u l a ~$ officinalis), $\beta \varepsilon \rho \beta \varepsilon \dot{v} \alpha \alpha$ (Vervena hybrita), ка兀ь९દ́ऽ (Tagetes erecta).
2) Подvєти́ : Портоида́ка (Portulaca grandiflora), $\gamma \kappa \alpha \zeta \dot{\alpha v ı \alpha ~(G a z a n i a ~ r i g e n s), ~ б к \nu \lambda \alpha ́ к ı ~}$ (Antirrhinum majus), $\mu \pi \imath \gamma \kappa$ via (Begonia sempeflorens), $\gamma \varepsilon \rho \alpha ́ v 1 ~(P e l a r g o n i u m ~$ zonale), $\chi \rho \cup \sigma \alpha ́ v \theta \varepsilon \mu$ (Chrysanthemum x morifolium).

 $\beta \alpha \sigma 1 \lambda ı к$ о́s.

Eıкóva 5．Movó $\alpha \alpha \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~ \kappa \alpha \lambda \lambda \omega \pi \iota \sigma \tau \iota \kappa \omega ́ v ~ \varphi \cup \tau \dot{v}$ ．
Пívakas 3．Нияродóyı ожорás avӨокоцикळ́v甲utめ́v．

Iavováplos	
Фeßpováploc	K $\alpha \tau \eta \varphi \varepsilon ́ \varsigma, ~ \beta \varepsilon \rho \beta \varepsilon ́ v \alpha$.
Máptios	
Ampínlos	Портоv $\alpha^{\alpha}<\alpha$ ，$\sigma \varepsilon \lambda$ ó̧ıа．
Málos	Порточла́ка，丂ívvia．
Iov́vios	Zívvia．
Iov́八uloc	Прі́цоv $\alpha, \chi \rho v \sigma \alpha ́ v \theta \varepsilon \mu о$.
Av́youotos	
इ¢лтย์ßpms	$\Pi \alpha \nu \sigma \varepsilon ́ \varsigma, \gamma \kappa \alpha \zeta \alpha ́ \nu 1 \alpha, \beta 10 \lambda \varepsilon ́ \tau \alpha$.
Oктळ́ßp川s	
Nośußpns	
＆кย์儿ßpns	इe入ó̧ıa．

Н $\delta 1 \alpha \delta \iota \kappa \alpha \sigma i ́ \alpha ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s ~ \sigma \pi о \rho о ́ \varphi \cup \tau \omega v ~ \xi \varepsilon \kappa ı v \alpha ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \tau \eta \varsigma ~ \sigma \pi о \rho \alpha ́ \varsigma . ~ O ı ~ \sigma \pi o ́ \rho о \imath ~$

 то олоío ह́ $\chi \varepsilon \iota ~ \alpha \lambda \varepsilon \sigma \tau \varepsilon i ́ ~ \gamma ı \alpha ~ v \alpha ~ \varepsilon i ́ v \alpha l ~ \alpha \varphi \rho \alpha ́ \tau о, ~ \tau о \pi о \theta \varepsilon \tau о и ́ v \tau \alpha ı ~ \sigma \tau \eta ~ \sigma \pi \alpha \rho \tau \iota к \eta ́ ~ \mu \eta \chi \alpha v \eta ́ ~ \gamma ı \alpha ~ v \alpha$ толо $\theta \varepsilon \tau \eta \theta \varepsilon i ́ ~ о ~ \sigma \pi о ́ \rho о \varsigma ~ к \alpha ı ~ к \alpha \tau \alpha ß \rho \varepsilon ́ \chi о v \tau \alpha ı . ~ \Sigma \tau \eta ~ \sigma v v \varepsilon ́ \chi \varepsilon ı \alpha ~ \tau \alpha ~ \pi \lambda \alpha i ́ \sigma ı \alpha ~ к \alpha \lambda и ́ \pi \tau о v \tau \alpha 1 ~ \mu \varepsilon ~$

 $\lambda i ́ \pi \alpha v \sigma \eta \tau 0 v \varsigma, \mu \varepsilon ́ \sigma \omega \tau \eta \varsigma \dot{\alpha} \rho \delta \varepsilon v \sigma \eta \varsigma, \mu \varepsilon \varphi \omega \sigma \varphi о \rho \iota \kappa \alpha ́ \kappa \alpha l ~ \sigma ט ́ v \theta \varepsilon \tau \alpha ~ \lambda ı \pi \alpha ́ \sigma \mu \alpha \tau \alpha, \pi \rho о \sigma \varepsilon ́ \chi о \nu \tau \alpha \varsigma ~ v \alpha$

 каı толо $\theta \varepsilon \tau о и ́ v \tau \alpha \iota ~ \sigma \tau о ~ \theta \varepsilon \rho \mu о к \eta ́ \pi ı о . ~$

 $\kappa \alpha \tau \alpha \sigma \tau \rho \alpha \varphi \varepsilon i ́ \eta \pi \alpha \rho \alpha \gamma \omega \gamma \eta$.

KEФAAAIO $\mathbf{2}^{\mathbf{0}}$ - KATAKEYATIKA KAI $\Lambda E I T O Y P \Gamma I K A ~$ XAPAKTHPIETIKA MONA $\Delta A \Sigma$

2.1. $\Sigma \kappa \varepsilon \lambda \varepsilon \tau о ́ \varsigma ~ Ө \varepsilon \rho \mu о к \eta \pi i ́ o v . ~$

- Avor $\gamma \mu \alpha \alpha \psi i ́ \delta \omega v: 6,40 \mathrm{~m}$
- Aло́бтабך $\alpha \psi i ́ \delta \omega v: 3.00 \mathrm{~m}$
- 'Yчог v $\delta \rho о \rho \rho о п ́ \varsigma: ~ 3.50 m m ~$
- 'Yчоз коричи́я: 3,50m

- Мұ́коऽ : 52 m ($54 \alpha \psi i ́ \delta \varepsilon \varsigma, ~ 18 ~ \sigma \varepsilon \kappa \alpha ́ \theta \varepsilon \sigma \eta ́ \rho \alpha \gamma \gamma \alpha)$
- E $\mu \beta \alpha \delta o ́ v: ~ 998,4 m^{2}$

К $\lambda \iota \mu \alpha \tau \iota к \alpha ́$ рорті́а:

- Фортío χ ıvıov́: $25 \mathrm{~kg} / \mathrm{m}^{2}$
- Фортío ка入入ıє́ $\rho \gamma \varepsilon \iota \alpha \varsigma: ~ 15 \mathrm{~kg} / \mathrm{m}^{2}$
 $\theta \varepsilon \rho \mu \circ v ́ \quad \gamma \alpha \lambda \beta \alpha v 1 \sigma \mu о v ́$ «Hot Dip Galvanize», $\mu \varepsilon \pi \alpha ́ \chi o \varsigma ~ \gamma \alpha \lambda \beta \alpha v i ́ \sigma \mu \alpha \tau о \varsigma ~ m i n i m u m ~ 400 \mathrm{~g} / \mathrm{m}^{2}$

 $\mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta ~ \mu \alpha ́ \zeta \alpha ~ \tau о v ~ \chi \alpha ́ \lambda \nu \beta \alpha ~ \sigma \chi \eta \mu \alpha \tau i ́ \zeta о v \tau \alpha \varsigma ~ \delta ı \alpha ́ \varphi о \rho \alpha ~ к \rho \alpha ́ \mu \alpha \tau \alpha ~ F e-Z n ~ \pi о v ~ к \alpha \lambda о ́ \pi \tau о \nu \tau \alpha ı ~ \alpha \pi o ́ ~ \tau о ~$ бтрю́ $\mu \alpha \kappa \alpha \alpha \rho о$ Zn.

 $\varphi \tau \alpha ́ v \varepsilon \iota ~ \sigma \tau о 104 \tau \eta \varsigma$ í $\delta i \alpha \kappa \lambda i ́ \mu \alpha \kappa \alpha \varsigma$.

- K $\alpha \mu \pi ט ́ \lambda o t ~ \sigma \omega \lambda \eta ́ v \varepsilon \varsigma ~ 60 m m X 2 m m . ~$
- OpӨобта́ $\tau \varepsilon \varsigma ~ 60 \mathrm{mmX3mm}$.
- Yбророоє́ $\nu \varepsilon \cup \rho \omega \mu \varepsilon ́ v \varepsilon \varsigma ~ \sigma \varepsilon ~ 6 ~ \sigma \eta \mu \varepsilon i ́ \alpha, ~ \pi \alpha ́ \chi о v \varsigma ~ 2 m m . ~$
- $\Sigma \omega \lambda \eta \dot{v \varepsilon \varsigma} \sigma v v \delta \varepsilon ́ \sigma \varepsilon \omega \varsigma ~(\tau \varepsilon \gamma i \delta \varepsilon \varsigma) 33 \mathrm{mmX} 2 \mathrm{~mm}$.
- $\Sigma \tau \alpha v \rho o i ́ ~ \sigma v v \alpha \rho \mu о \lambda o ́ \gamma \eta \sigma \eta \varsigma ~ \alpha \psi i ́ \delta \omega v ~ 53 m m X 2,5 m m . ~$
- Кєф $\alpha \bar{\varepsilon} \varsigma$ v $\pi о \delta о \chi \eta ́ s ~ \sigma \chi \eta ́ \mu \alpha \tau о \varsigma ~ " Y " ~ \gamma ı \alpha ~ \tau \eta ~ \sigma v v \alpha \rho \mu о \lambda o ́ \gamma \eta \sigma \eta ~ \tau \omega v ~ \alpha \psi i ́ \delta \omega v ~ \pi \alpha ́ \chi o v s ~ 3 m m . ~$

- $\Sigma \omega \lambda \eta ́ v \varepsilon \varsigma ~ \tau \varepsilon \tau \rho \alpha \gamma \omega v \kappa \varkappa ́ s ~ \delta ı \alpha \tau о \mu \eta ́ s ~ 25 m m X 25 m m ~ к \alpha ı ~ 30 m m X 30 m m ~ \gamma ı \alpha ~ \tau \eta \nu ~$ $\varepsilon \gamma \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \tau о \cup ~ \cup \lambda ı \kappa о и ́ ~ к \alpha ́ \lambda u \psi \eta \varsigma$.

2.2. Y λ ıкó ки́ $\lambda \cup \psi \eta \varsigma$.

Н ка́ $\lambda v \psi \eta$ тои $\theta \varepsilon \rho \mu о к \eta \pi i ́ o v ~ \theta \alpha ~ \gamma i ́ v \varepsilon ı ~ \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta ~ \delta v o ~ \delta ı \alpha \varphi о \rho \varepsilon \tau ı к ळ ́ v ~ v \lambda ı к ळ ́ v ~ \delta ı \alpha ́ \varphi ~ ¢ \alpha v o v ~$

 $\lambda \alpha \chi \alpha v i \kappa \dot{v}$.

- Eıঠıко́ऽ $\beta \alpha ́ \rho о с: ~ 0,92 \mathrm{gr} / \mathrm{cm}^{3}$
- Па́бо૬: 0,18mm

- Елии́коvбף: 500\%

2.2.2. Ка́ $\lambda v \psi \eta \pi \rho о \sigma o ́ \psi \varepsilon \omega v ~ к \alpha \iota ~ \pi \lambda \alpha i ̈ v ต ́ v ~ \pi \lambda \varepsilon v \rho ळ ́ v . ~$

 $\sigma \kappa \lambda \eta \rho o ́ ~ \pi \lambda \alpha \sigma \tau \iota \kappa o ́ ~ \pi о \lambda \cup \varepsilon \sigma \tau \varepsilon ́ \rho \alpha, \tau v ́ \pi \circ v$ fiberglass, $\mu \varepsilon \alpha v \lambda \alpha \kappa \omega \tau \varepsilon ́ \varsigma ~ \varepsilon \pi \iota \varphi \alpha ́ v \varepsilon \iota \varepsilon \varsigma$.

 $\mu \varepsilon \gamma \alpha \lambda$ и́тєрŋऽ $\alpha \nu \tau о \chi \eta ́ s$.

 $\kappa \alpha \lambda о к \alpha i ́ \rho ь$.

 $\varepsilon v \tau о ́ \mu \omega v$ бто $\varepsilon \sigma \omega \tau \varepsilon \rho$ кко́ тоv $\theta \varepsilon \rho \mu о к \eta \pi$ íov.

Фибıкє́ऽ ı δ เóтๆ $\tau \varepsilon \varsigma ~ \sigma \kappa \lambda \eta \rho о и ́ ~ \pi \lambda \alpha \sigma \tau ı к о и ́ ~ f i b e r g l a s s . ~$

- Eiঠıкó β ápoç: $1,6 \mathrm{gr} / \mathrm{m}^{3}$
- Пázos: 1 cm
- Пєрато́тๆта ๆ入лакŋ́s актıvoßо入ías: 90\%

2.3. $\Theta \varepsilon \mu \varepsilon \lambda i ́ \omega \sigma \eta ~ к \alpha \tau \alpha \sigma \kappa \varepsilon v \eta ์ ร ~$

2.4. $\Sigma v ́ \sigma \tau \eta \mu \alpha \propto \xi \alpha \varepsilon \rho เ \sigma \mu о v ́$

2.4.1. Фvбıкó $\sigma v ́ \sigma \tau \eta \mu \alpha \alpha \xi \alpha \varepsilon \rho ı \sigma \mu \circ v ́$

2.4.2. $\Delta v v \alpha \mu \iota \kappa$ ó $\sigma v ́ \sigma \tau \eta \mu \alpha ~ \varepsilon \xi \alpha \varepsilon \rho \iota \sigma \mu о v ́$

 $\varepsilon ı \delta ı \kappa \alpha ́ ~ \sigma \chi \varepsilon \delta 1 \alpha \sigma \mu \varepsilon ́ v o v \varsigma ~ \gamma ı \alpha ~ \alpha \varepsilon \rho ı \sigma \mu o ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda \omega v ~ \chi \omega ́ \rho \omega v, ~ к \alpha l ~ \varepsilon ́ v \alpha ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \alpha v \alpha к и к \lambda о \varphi о р i ́ \alpha \varsigma ~ \alpha \varepsilon ́ \rho \alpha ~$
 $\mu i ́ \alpha ~ \pi \rho o ́ \sigma о \psi \eta ~ \tau о v ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v, ~ \mu \varepsilon ~ \tau о ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \delta \rho о \sigma ı \sigma \mu о v ́ ~ \sigma \tau \eta \nu ~ \alpha ́ \lambda \lambda \eta ~ \pi \rho o ́ \sigma о \psi \eta, ~ \varepsilon v ต ́ ~ o 七 ~$

 $\alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma \mu \varepsilon \tau \alpha \xi \check{~ \tau o v \varsigma . ~}$

 то $\xi \omega \tau о ט ์ ~ \pi о \lambda \lambda \alpha \pi \lambda о и ́ ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v ~$

 غтаıpદías Soler \& Palau Sistemas de Ventilaćn, S.L.U. , HIB-50 1,5 HP (1.10Kw) ßápous

 $\varepsilon \pi i \pi \varepsilon \delta \alpha$ Өo

2.5. $\Sigma v ́ \sigma \tau \eta \mu \alpha$ סробıб μ оv́

 $\theta \varepsilon \rho \mu о к р \alpha \sigma$ т́ тоv χ ю́ро к $\alpha \alpha \dot{\alpha} 3-12^{\circ} \mathrm{C}$.
$\Sigma \tau \eta$ Өєрнокплıакŋ́ $\mu \alpha \varsigma ~ \mu о v \alpha ́ \delta \alpha ~ \theta \alpha ~ \chi \rho \eta \sigma ц о \pi о э ŋ ́ \sigma о v \mu \varepsilon ~ p a n e l s ~ M O D E L ~ 7090 B C ~ \tau \eta \varsigma ~$ $\varepsilon \lambda \lambda \eta \nu ı \kappa \eta ́ \varsigma \varepsilon \tau \alpha \iota \rho \varepsilon i ́ \alpha \varsigma ~ A N T A R T I S ~ C O . ~$

Tєұvıка́ $\chi \alpha \rho \alpha \kappa \tau \eta \rho ı \tau \tau к \alpha ́ ~ \tau \varepsilon \mu \alpha \chi i ́ o v ~ v \gamma \rho о v ́ ~ p a n e l . ~$

$\Delta ı \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma \pi \alpha ́ v \varepsilon \lambda \mu \circ v \alpha ́ \delta \alpha \varsigma:$

- Мף́коц: 16 m
- 'Yүос: 2,00m
- E $\mu \beta \alpha \delta o ́ v: 32 \mathrm{~m}^{2}$

Eıкóva 12. Пávє入 δ робıб μ ov́.

Eukóva 13. Порஸ́ $\delta \varepsilon \varsigma ~ v \lambda ı к o ́ ~ \alpha \pi o ́ ~ \pi \alpha ́ v \varepsilon \lambda ~ \delta \rho о \sigma ı \sigma \mu \circ v ́ . ~$

2．6．इv́бтๆuん $\theta \dot{\varepsilon} \rho \mu \alpha \nu \sigma \eta ร$

Oı бช́үүроvєऽ $\theta \varepsilon \rho \mu о к \eta \pi \iota \alpha \kappa \varepsilon ́ \varsigma ~ \mu о v \alpha ́ \delta \varepsilon \varsigma ~ \delta ı \alpha \theta \varepsilon ́ t o v v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \theta \varepsilon ́ \rho \mu \alpha v \sigma \eta \varsigma, \pi \rho о к \varepsilon \mu \varepsilon ́ v о v ~ v \alpha$

 $\delta 1 \alpha \theta \varepsilon ́ \tau \varepsilon 1$ عíval $\sigma \tau \varepsilon \rho \varepsilon ळ ́ v ~ к \alpha v \sigma i ́ \mu \omega v ~ \mu \varepsilon ~ \varepsilon v \rho v ́ \chi \omega \rho \eta ~ \sigma \chi \alpha ́ \rho \alpha ~ \alpha \pi о \tau \varepsilon \lambda о v ́ \mu \varepsilon v \eta ~ \alpha \pi o ́ ~ \tau \varepsilon \mu \alpha ́ \chi 1 \alpha$

 карлळ́v каı ка́ β ßovvo．

Tє $\vee \vee \kappa \alpha ́ \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau ı \kappa \alpha ́ \lambda \varepsilon ́ \beta \eta \tau \alpha:$
－Yчף
－Мєүव́入os $\theta \alpha ́ \lambda \alpha \mu о \varsigma ~ к \alpha v ́ \sigma \eta \varsigma ~ \mu \varepsilon ~ \varepsilon \pi \varepsilon ́ v \delta v \sigma \eta ~ \pi v \rho о \mu \pi \varepsilon \tau о v ́, ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ \kappa \alpha i ́ \gamma \varepsilon \tau \alpha l ~ o ́ \lambda o ~ \tau o ~$ каи́бцно．
 π т $\lambda \lambda \varepsilon ́ \varsigma ~ ஸ ́ \rho \varepsilon \varsigma . ~$
甲 $\lambda о ́ \gamma \alpha \varsigma$.
－Өєриокрабíєऽ каvбаєрí ωv ка́ $\tau \omega \tau \omega v 150^{\circ} \mathrm{C}$ ．
－Пíєбף $\lambda \varepsilon ı \tau о и \rho \gamma i ́ a s ~ 3 b a r . ~$
－X $\omega \rho \eta \tau \iota \kappa o ́ \tau \eta \tau \alpha$ v́ $\delta \alpha \tau o s ~ 2201 \mathrm{t}$ ．
－Aлóסooๆ 50－60Kw．
－K α v́бף $\sigma \tau \varepsilon \rho \varepsilon \omega ́ v ~ к \alpha v \sigma i ́ \mu \omega v ~ \mu \varepsilon ~ \mu \varepsilon ́ \gamma ı \sigma \tau \eta ~ v \gamma \rho \alpha \sigma i ́ \alpha ~ 60 \% ~$
－$\Delta v v \alpha \mu \iota \kappa ́ \tau \eta \tau \alpha 150.000 \mathrm{kcal} / \mathrm{h}$
इóvo $\lambda_{0} \alpha v \alpha \gamma \kappa \dot{v}$ б ε Ө $\varepsilon \rho \mu o ́ \tau \eta \tau \alpha$ ：

－Алаıтои́ $\mu \varepsilon \eta_{\eta} \delta \alpha v \iota к \eta ́ \theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \alpha ~ 22^{\circ}-25^{\circ} \mathrm{C}$ ．

 Ф18 $\mathfrak{\eta}$ Ф22．

Eıкóva 14. $\Lambda \varepsilon ́ \beta \eta \tau \alpha \varsigma ~ \beta ı о \mu \alpha ́ \zeta \alpha \varsigma ~ \mu \varepsilon ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ \pi \alpha \rho о \chi \eta ́ \varsigma ~ к \alpha v ́ \sigma ı \mu \eta \varsigma ~ v ́ \lambda \eta \varsigma . ~$

Eıкóva 15. $\Sigma \omega \lambda \eta \nu \omega ́ \sigma \varepsilon ı \varsigma ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \theta \varepsilon ́ \rho \mu \alpha v \sigma \eta \varsigma ~ \theta \varepsilon \rho \mu о \kappa \eta \pi i ́ o v ~ \pi \alpha ́ v \omega ~ \sigma \varepsilon ~ \kappa \lambda i ́ v \varepsilon \varsigma . ~$

2.7. Өєриокоиртívє̧ бкíaбףऽ

 $\kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \alpha \pi o ́ ~ \varepsilon ı \delta ı \kappa \alpha ́ ~ \varphi v ́ \lambda \lambda \alpha ~ \alpha \lambda о v \mu i v i ́ o v ~ \pi \alpha ́ \chi o v \varsigma ~ 30-60 \mu m ~ \mu \varepsilon ~ v \psi \eta \lambda o ́ ~ \pi о \sigma о \sigma \tau o ́ ~$

 $\tau \eta \varsigma ~ \sigma \tau \alpha \gamma о$ vóл $\tau \omega \sigma \eta \varsigma \alpha \pi$ о́ $\tau \eta v$ орофŋ́ тоv $\theta \varepsilon \rho \mu о к \eta \pi i ́ o v$.

'Eva бv́бтŋ $\mu \alpha$ v $\delta \rho о v \varepsilon ́ \varphi \omega \sigma \eta \varsigma ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha ı ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ \delta i ́ \kappa \tau v o ~ \sigma \omega \lambda \eta \nu \omega ́ \sigma \varepsilon \omega v ~ \pi о v ~ \alpha v \alpha \rho \tau \alpha ́ \tau \alpha ı ~ \pi \alpha ́ v \omega ~$ $\alpha \pi o ́ ~ \tau \eta \nu ~ \kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon 1 \alpha ~ \sigma \varepsilon ~ \delta \iota \alpha ́ \varphi o \rho \alpha ~ \sigma \eta \mu \varepsilon i ́ \alpha ~ \tau о v ~ \sigma \kappa \varepsilon \lambda \varepsilon \tau \tau v ́ ~ \tau \eta \varsigma ~ \kappa \alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta ́ \varsigma . ~ T o ~ v \varepsilon \rho o ́ ~ \pi \varepsilon \rho v ต ́ v \tau \alpha \varsigma ~$

 $\kappa \alpha 1$ 人́ $\rho \delta \varepsilon v \sigma \eta$.

 $\alpha \pi$ ó $\alpha v \tau \alpha ́ \pi o v \pi \alpha \rho \alpha ́ \gamma o v v ~ \sigma \tau \alpha \gamma o v i ́ \delta i \alpha \mu \kappa \rho \eta ́ \varsigma ~ \delta i \alpha \mu \varepsilon ́ \tau \rho o v ~(\sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha$ fogger каı fog).

 $\sigma \omega \lambda \eta \nu \omega ́ \sigma \varepsilon \omega \nu \quad \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha 1 \quad \alpha \pi o ́ \quad \pi \lambda \alpha \sigma \tau \iota \kappa \varepsilon ́ \varsigma ~ \sigma \omega \lambda \eta ́ v \varepsilon \varsigma ~ \delta 1 \alpha \mu \varepsilon ́ \tau \rho о v \quad \Phi 25 x 32 \mathrm{~mm}, \beta \alpha \lambda \beta i ́ \delta \alpha$
 XJM 100 1HP, $\pi \alpha \rho о \chi \eta ́ s ~ 2.5001 t / \mathrm{h}$.

Eıкóva 19. $\Sigma \chi \varepsilon ́ \delta ı \sigma$ бטбтท́ $\mu \alpha \tau \circ \varsigma ~ v \delta \rho о v \varepsilon ́ \varphi \omega \sigma \eta \varsigma$.

Eıкóva 20. Σ v́б $\tau \eta \mu \alpha$ v $\delta \rho \circ v \varepsilon ́ \varphi \omega \sigma \eta \varsigma ~ \sigma \varepsilon ~ \pi \lambda \eta ŋ \rho \eta ~ \lambda \varepsilon ı \tau о v \rho \gamma i ́ \alpha . ~$

2.9 ＠а́д $\alpha \mu о \varsigma \pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma$

Гı $\gamma \rho \eta ́ \gamma о \rho \eta$ ，оноьо́ $о \rho \varphi \eta$ каı $\mu \alpha \zeta ı к \eta ́ ~ \varepsilon к \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta ~ \varphi v \tau \alpha \rho i ́ \omega v ~ \alpha \pi \alpha ı \tau \varepsilon i ́ \tau \alpha ı ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~ \theta \alpha \lambda \alpha ́ \mu о v ~$
 vүрабías，$\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma ~ к \alpha \iota ~ \varphi \omega \tau \iota \sigma \mu о v ́, ~ \pi о v ~ \beta о \eta \theta о v ́ v ~ \tau \eta \nu ~ \varepsilon \kappa \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma ~ \tau \omega v ~ \sigma \pi о ́ \rho \omega v . ~ \Sigma \tau о ~$
 $\varepsilon \pi \iota \sigma \tau \eta \mu o ́ v \omega v$ ŋ́ $\tau \omega v \pi \alpha \rho \alpha \gamma \omega \gamma \omega ́ v$.

 $\nu \alpha \lambda \varepsilon ı \tau о \cup \rho \gamma \varepsilon i ́ ~ \sigma \varepsilon ~ к о \rho \varepsilon \sigma \mu \varepsilon ́ v \eta ~ \alpha \tau \mu о ́ \sigma \varphi \alpha ı \rho \alpha ~ v \gamma \rho \alpha \sigma i ́ \alpha \varsigma, ~ \delta i ́ \chi \omega \varsigma ~ v \alpha ~ \pi \alpha \theta \alpha i ́ v \varepsilon ı ~ \beta \lambda \alpha ́ \beta \varepsilon \varsigma . ~$

TعХvıка́ $\delta \varepsilon \delta о \mu \varepsilon ́ v \alpha \theta \alpha \lambda \alpha ́ \mu о v \pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma:$

－Ev́pos $\theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \alpha s: ~ 10-40^{\circ} \mathrm{C}(+/-2 \%)$ ．

－Парохŋ́ $\rho \varepsilon$ ט́ $\mu \alpha \tau о \varsigma: 380-400 \mathrm{VAC} / 3 \mathrm{pH} / 50 \mathrm{~Hz}$ ．

Eífog	
Mapovidi	24－32
Aázovo	48
Kouvouaíoi	48
Млло́кодо	48
Nторо́т α	48－72
Питерıá	48－72
Me入lu̧áva	72
Koдoкú日t	24
Ay\％ov́pl	24
Kарлоט́ğı	24
П®лóvi	24
При́бо	32
	32
ェ̇̇̇入ıvo	32－72
Mä̈vtavós	32
AmpOos	32
Buбıへıkós	32

Eıкóva 21. Гú $\gamma \chi \rho \circ$ vos $\theta \alpha ́ \lambda \alpha \mu \circ \varsigma / \delta \omega \mu \alpha ́ \tau ı o ~ \pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma . ~$

2.10 इлартькท́ $\mu \eta \chi \alpha v \eta ́$

 Oı $\mu \eta \chi \alpha v \varepsilon ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \varepsilon i ́ v \alpha l, ~ к v \rho i ́ \omega \varsigma, ~ \pi v \varepsilon v \mu \alpha \tau ぃ к \varepsilon ́ \varsigma ~ \kappa \alpha l ~ \varepsilon i ́ v \alpha l ~ к \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \varepsilon \varsigma ~ \gamma ı \alpha ~ \sigma \pi о \rho \alpha ́ ~ \sigma \varepsilon ~ \delta i ́ \sigma \kappa о v \varsigma . ~ H ~$

ТєХขıка́ $\delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \sigma \pi \alpha \rho \tau ו к \eta ́ \varsigma ~ \mu \eta \chi \alpha v \eta ́ \varsigma: ~$

- $\Delta 1 \alpha \sigma \tau \alpha ́ \sigma \varepsilon \iota \varsigma ~ \delta о \chi \varepsilon i ́ \omega v: ~ 600 x 400 m m . ~$
- 'Yүос бохвí $\omega \mathrm{v}: 150 \mathrm{~mm}$.
- Bápos: 80kg.
- $\Sigma v ́ \sigma \tau \eta \mu \alpha \alpha v \alpha \rho \rho o ́ \varphi \eta \sigma \eta \varsigma-\varepsilon \kappa \kappa \varepsilon ́ v \omega \sigma \eta \varsigma: ~ S i s t e m a ~ v e n t u r i . ~$
- Katavó $\lambda \omega \sigma \eta$ $\alpha \varepsilon ́ \rho \alpha$ (max): $1901 \mathrm{l} / \mathrm{min}$.
- Tútot $\alpha к \rho о \varphi и \sigma i ́ \omega v ~(m m): ~ 0,25-0,40-0,60-1 . ~ . ~$

Eıкóva 23．Σ v́ $\tau \tau \eta \mu \alpha$ толо日と́tๆбๆร $\sigma \pi o ́ \rho \omega v ~ \sigma \pi \alpha \rho \tau \iota \kappa \eta ́ \varsigma ~ \mu \eta \chi \alpha v \eta ́ \varsigma . ~$

Eıкóv人 24．E $\xi \alpha \rho \tau \not \subset \mu \alpha \tau \alpha \alpha \pi \alpha \rho \tau \iota \kappa \eta ́ \varsigma ~ \mu \eta \chi \alpha v \eta ́ s$.

KEФAムAIO 3°－TEXNOOIKONOMIKH ANAAYェH TH Σ

 ПРОГ КОГТОДОГНГН ఆЕРМОКНПIAKHェ MONA $\Delta A \Sigma$

 $\pi \rho о ́ \gamma \rho \alpha \mu \mu$.

3.1. Aסعıoסó $\tau \eta \boldsymbol{\eta} \eta$

 $\alpha \pi o ́ ~ \tau \eta \nu \eta \mu \varepsilon \rho о \mu \eta v i ́ \alpha ~ \varepsilon ́ к \delta о \sigma \eta \varsigma ~ \tau \eta \varsigma$.

Н $\alpha \pi \alpha ı \tau о v ́ \mu \varepsilon v \eta ~ \alpha ́ \delta \varepsilon ı \alpha ~ \varepsilon i ́ v \alpha ı ~ \eta ~ \varphi \cup \tau \omega \rho ı \alpha к \eta ́ ~ \alpha ́ \delta \varepsilon ı \alpha ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ์ \varsigma ~ \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma ı \alpha \sigma \tau ı к о v ́ ~ v \lambda ı к о v ́ ~$
 $\theta \alpha \pi \rho \varepsilon ́ \pi \varepsilon \iota ~ v \alpha ~ \delta \eta \lambda \omega \theta \varepsilon i ́, ~ \tau о \cup \lambda \alpha ́ \chi ı \tau \tau o v ~ \varepsilon ́ v \alpha \varsigma, ~ \varepsilon \pi ı \sigma \tau \eta \mu о v ı \kappa o ́ \varsigma ~ v \pi \varepsilon v ́ \theta \nu v o \varsigma, ~ \gamma \varepsilon \omega \pi o ́ v o \varsigma ~ \eta ́ ~ \tau \varepsilon \chi v o \lambda o ́ \gamma o \varsigma ~$

 E.E..

3.2. Eлtvóvu

Еүкатабто́бєı૬:

- Өєриоки́льо: $24.000 €$
- $\Sigma к i ́ \alpha \sigma \tau \rho о: 500 €$

'Еүүєוє̧ $\beta \varepsilon \lambda \tau \iota \omega ́ \sigma \varepsilon เ \varsigma-\delta \iota \alpha \mu о ́ \rho \varphi \omega \sigma \eta ~ \chi \omega ́ \rho о v:$

- Пгрі́ $\rho \alpha \xi \xi \eta: 1.000 €$
- Káduษๆ $\varepsilon \delta \alpha ́ \alpha \rho o v \varsigma ~ \mu \varepsilon ~ \varepsilon v i \sigma \chi \cup \mu \varepsilon ́ v o ~ \sigma \kappa v \rho o ́ \delta \varepsilon \mu \alpha: ~ 6000 € ~$

E $\boldsymbol{\xi}_{\boldsymbol{o}} \boldsymbol{\pi} \lambda \iota \sigma \mu$ о́я:

- Єá $\lambda \alpha \mu о \varsigma \pi \rho о \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta \varsigma: 3.600 €$
- $\Sigma \pi \alpha \rho \tau \iota к \eta ́ \mu \eta \chi \alpha v \eta ์: 3.500 €$
- .
- í́ктvo $\sigma \omega \lambda \eta v \omega ́ \sigma \varepsilon \omega v ~ \sigma и \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~_{\theta \varepsilon ́ \rho \mu \alpha v \sigma \eta \varsigma: ~}^{350 €}$
- Σ v́бтๆ $\mu \alpha$ Өяриокоиртívตv: 4.000€
- Σ v́ $\tau \tau \eta \mu$ 反робı $\sigma \mu$ оv: $2.500 €$

 $\alpha ́ \lambda \lambda о \varsigma \varepsilon \xi \circ \pi \lambda 1 \sigma \mu o ́ s .486 €)$ ．
－$\Sigma v ́ \sigma \tau \eta \mu \alpha$ 人́ $\rho \delta \varepsilon v \sigma \eta \varsigma: 500 €(190 € \alpha v \tau \lambda i ́ \alpha, 310 €$ extra $\varepsilon \xi$ ол $\lambda ı \sigma \mu o ́ \varsigma)$ ．
－$\Delta \varepsilon \xi \alpha \mu \varepsilon v \varepsilon ́ \varsigma ~ v \varepsilon \rho \circ v ́: ~ 300 €(150 € \times 2$ б $\varepsilon \xi \alpha \mu \varepsilon v \varepsilon ́ \varsigma)$ ．
－Нлект $о \lambda о \gamma ぃ \kappa \varepsilon ́ \varsigma ~ \varepsilon \gamma к \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma: ~ 3.500 € ~$

Δ tá popa：

－Eрүа入єía：200€

3．3．$\Delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \kappa \alpha \tau \alpha ́ ~ \varphi о \rho \varepsilon i ́ ̧ ~ \kappa \alpha l ~ \sigma v v \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon ́ \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma ף ́ \varsigma ~$

Тєкцарто́ ε роі́кıо $=80.000 € \times 2,5 \%=2.000 €$
$\Delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma: ~ E i ́ v \alpha ı ~ \tau о ~ к о ́ \sigma \tau о \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \pi о v ~ о р i ́ ̧ \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \tau \eta \varsigma ~ \varepsilon р \gamma \alpha \sigma i ́ \alpha \varsigma ~$

Mŋヶıaí $1 \delta i ́ \alpha ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha=25 \eta \mu \varepsilon ́ \rho \varepsilon \varsigma \times 27,12 € \times 1(1 \varepsilon \rho \gamma \alpha ́ \tau \eta \varsigma)=678 €$
Eтŋ́бı $\downarrow \delta i ́ \alpha \alpha ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~=~ 300 ~ \eta \mu \varepsilon ́ \rho \varepsilon \varsigma ~ x ~ 27,12 € ~ x ~ 1 ~(1 ~ \varepsilon \rho \gamma \alpha ́ \tau \eta \varsigma) ~=~ 8.136 € ~$

Е $\tau \dot{\sigma} \sigma \alpha$ そ̌́vŋ $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha=300 \eta \mu \varepsilon ́ \rho \varepsilon \varsigma \times 27,12 € \times 1(1 \varepsilon \rho \gamma \alpha ́ \tau \eta \varsigma)=8.136 €$
इर́vo ${ }^{\text {on }}=16.272 €$

Ерү $\alpha \tau о \omega ́ \rho \varepsilon \varsigma \pi \alpha \rho \alpha \gamma \omega \gamma \eta ์ \varsigma:$

 $\alpha v \theta \rho \omega ́ \pi ı \nu \eta ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$.

1) А $\boldsymbol{\pi} 0 \boldsymbol{\sigma} \beta \boldsymbol{\varepsilon} \sigma \varepsilon \iota \varsigma:$

- Өєриоки́тьо, бкі́ $\alpha \sigma \tau \rho о и=24.500 €$ х $5 \%=1.225 €$
- $\mathrm{E} \xi$ ол $\lambda \iota \sigma \mu \circ$ о́ $=25.406 € \times 10 \%=2.540 .6 €$

2) $\Sigma v v \tau \eta ́ \rho \eta \sigma \eta:$

- Өєриокплíov $=24.000 €$ х $4 \%=960 €$
- $\Sigma \kappa i ́ \alpha \sigma \tau \rho о v=500 € \mathrm{x} 4 \%=20 €$
- М $\eta \chi \alpha v \eta \mu \alpha ́ \tau \omega v=25.406 \times 4 \%=1.016,24 €$

3) Абүа́ $\lambda ı \sigma \tau \rho \alpha:$

- $\Theta \varepsilon \rho \mu о к \grave{т} \pi ь$, бкі́ $\sigma \tau \rho о=24.500 € \mathrm{x} 5 \%=1225 €$

4) Tóкоı $\pi \alpha ́ \gamma$ เоv кєцадаíov

- Елєv $\delta \cup \mu \varepsilon ́ v o ~ \kappa \varepsilon \varphi \dot{́} \lambda \alpha ı / 2 \times 4 \%=57.106 € / 2 \times 4 \%=1.142,12 €$

Параүøүஸ́	Побо́tпта фото⿱
Avoışıótıка $\lambda \alpha \chi \alpha$ voкорика́	30.000
Kaдокаıрıvó－Ф日ıvoт＠pıvá えa犭avokopuкá （ Σ towpavOи́）	30.000
 	45.000
	8.900
	300

Eíos	
Beppéva	500
Bııдя́to	1.000
Гqpávı	300
Гкаца́via	500
Zívela	1.000
Портоидо́ка	500
	500
Katn¢śs	800
Пavaés	1.000
Петои́via	1.000
Портоида́коя	500
Прípova	1.000
$\Sigma \alpha \lambda \lambda \beta 1 \alpha$	500
इeinólo	500
Xpvoáv0\＆цо	200

Мєг $\alpha \beta \eta \tau \tau \dot{\varsigma} \varsigma \boldsymbol{\delta} \pi \alpha ́ \nu \varepsilon \varsigma$

－$\Sigma \pi$ о́ $\rho 0$ t $=1.800 €$

－Вєрнккоидítๆя $=485 €$
－Δ íбкоı φ и́tعvбףऽ $(\varphi \varepsilon \lambda \imath \zeta o ́ \lambda)=365 €$
－Г ${ }^{\text {－}} \alpha \sigma \tau \rho \alpha ́ \kappa 1 \alpha ~ \mu \varepsilon \tau \alpha \varphi v ́ \tau \varepsilon v \sigma \eta \varsigma ~(N o ~ 9, ~ N o ~ 11, ~ N o ~ 17) ~=~ 950 € ~$
－$\Lambda \imath \pi \alpha ́ \sigma \mu \alpha \tau \alpha=160 €$
－Фитолробт α бí $=120 €$
－$\Pi \varepsilon ́ \lambda \varepsilon \tau=700 €$
－$\Delta \mathrm{EH}=850 €$
－ $\mathrm{N} \varepsilon \rho \mathrm{o}^{=}=300 €$
－Ерүатıк人́ $=300 \eta \mu \varepsilon ́ \rho \varepsilon \varsigma \times 27,12 € \times 1 \varepsilon \rho \gamma \alpha ́ \tau \eta \varsigma / \sigma \tau \rho .=8.136 €$
－Метарорико́ $=460 €$

Σ v́voえo $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{v} v \delta \alpha \pi \alpha \nu \omega ́ v=14.910 €$
То́ко̧ кขкдофорıакои́ кєцадаíov
$14.910 / 2 € \times 8 \%=596,4 €$
Σ v́vo $\lambda о \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{v} v \delta \alpha \pi \alpha \nu \omega ́ v(0 \lambda \iota \kappa o ́)=15.506,4 €$

上YNOAIKE \triangle AMANE

$\Sigma \tau \alpha \theta \varepsilon \rho \varepsilon ́ \varsigma \delta \alpha \pi \alpha ́ v \varepsilon \varsigma+$ Мєт $\alpha \beta \lambda \eta \tau \varepsilon ́ \varsigma \delta \alpha \pi \alpha ́ v \varepsilon \varsigma=9.468,96 €+15506,4 €=24.975,36 €$

КЕФАААIO 4^{0} - OIKONOMIKA ГTOIXEIA ПАРАГЛГНГ

É́́os $\pi \alpha \rho \alpha \gamma о ́ \mu \varepsilon v \omega v$甲ขтஸ́v	Протєıvó $\mu \varepsilon ข \eta$ $\pi \alpha \rho \alpha \gamma \omega \gamma \mathfrak{\eta}$	Evסeıктıкó ко́бтоร $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ์ \varsigma$ avá pvтó （عטрஸ́）	ェvvoдıкó ко́бтоя $\pi \alpha \rho \alpha \gamma \omega \gamma \grave{\varsigma}$	Evסєıктıки́ $\tau \mu \eta{ }^{\tau}$ $\pi \omega^{\boldsymbol{\alpha}} \boldsymbol{\eta} \boldsymbol{\sigma} \boldsymbol{\eta}$ avó pvтó （عvคต́）	Evvoдıкó єוбó $\delta \eta \mu \boldsymbol{\alpha}$	
Avoļ̧ıátıкa дадаvокорика́	45.000	0，22	9.900	0，40	18.000	8.100
Kanokaipivál $\varphi \theta$ ıvoтळрıvá дадаvокорики́ （бтवupoveñ）	45.000	0，03	1.350	0，10	4.500	3.150
Ka入okaipivá／ $\varphi \theta$ ıvoтюр дадаvokopuќ （нарои́えı）	50.000	$\begin{gathered} 0,036- \\ 0,060 \end{gathered}$	1.800	0，10	5.000	3.200
Ka入入＠тıбтıки́ $\mu \varepsilon$ бто́ро	8.900	0，10	890	0，50－1，00	4.450	3.560
Kал入øтибтико́ $\mu \varepsilon \mu о \sigma \chi \varepsilon v ́ \mu \alpha \tau \alpha$	300	0，90	270	2，00	600	330
Eóvodo	149.200		14.210		32.550	18.340

Ака日ápıбтп $\pi \rho$ ó $\sigma 0 \delta о \varsigma$

 $3.150 €$
 $3.200 €$

$\underline{\text { Képóoc - Zquía }}$

$=32.550 €-24.975,36 €=\mathbf{7 . 5 7 4 , 6 4 €}$

АкаӨо́pıбто кย́рঠоя

 $\tau \omega v \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{v} \delta \alpha \alpha \pi \alpha v \varrho ́ v \tau \eta \varsigma \varepsilon \pi \tau \chi \varepsilon i ́ \rho \eta \sigma \eta \varsigma$.

$=32.550 €-15.506,4 €=\mathbf{1 7 . 0 4 3 , 6} €$

KaӨapŋ́ Про́бобос

 $\kappa \varepsilon \varphi \alpha \lambda \alpha i ́ o v ~ \kappa \alpha \iota ~ \tau \omega v ~ \varepsilon v о ю к i ́ \omega v ~ \tau \omega v ~ \alpha \gamma \rho о \tau \varepsilon \mu \alpha \chi i ́ \omega v$.

 $+(1.142,12 €+596,4 €)+(80.000 € \times 2,5 \%)=\mathbf{1 1 . 3 1 3 . 1 6 €}$

 $\kappa \varepsilon \varphi \alpha \lambda \alpha i ́ o v$.

 $+545,72 €)]=\mathbf{1 8 . 2 5 6 , 3 6 €}$

 єкатобтıаí $\sigma \chi \varepsilon ́ \sigma \eta ~ \tau \eta \varsigma ~ \kappa \alpha Ө \alpha \rho \eta ́ \varsigma ~ \pi \rho о \sigma o ́ \delta o v ~ к \alpha ı ~ \tau о v ~ \varepsilon \pi \varepsilon v \delta ข \mu \varepsilon ́ v o v ~ к \varepsilon \varphi \alpha \lambda \alpha i ́ o v . ~$

Алодотько́тұта кєцада́́оv $=11.313 .16 € / 57.106 € \times 100 \%=\mathbf{0 . 1 9 \%}$

EYZHTHEH

 ко́бтоৎ тๆร $\theta \varepsilon \rho \mu о к \eta \pi ı \alpha \kappa \eta ́ \varsigma ~ \mu о v \alpha ́ \delta \alpha \varsigma ~ \varepsilon ́ ́ v \alpha ı ~ 57.106 €, ~ \mu \varepsilon ~ \tau о ~ к о ́ \sigma \tau о \varsigma ~ \alpha v \alpha ́ ~ \tau \varepsilon \tau \rho \alpha \gamma \omega v ı к o ́ ~ \mu \varepsilon ́ \tau \rho o ~ v \alpha ~$
甲utóv cívaı 1.160€. Oı бטvo入ıкદ́s $\delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \pi \alpha \rho \alpha \gamma ต \gamma ท ́ s ~ \alpha v \alpha ́ ~ \sigma \tau \rho \varepsilon ́ \mu \mu \alpha ~ \varepsilon i ́ v \alpha ı ~ 14.210 € . ~$

To $\sigma u ́ v o \lambda o ~ \tau \omega v ~ \delta \alpha \pi \alpha \nu \dot{\omega} v ~ \alpha v \alpha \lambda v ́ \varepsilon \tau \alpha l ~ \sigma \varepsilon ~ \sigma \tau \alpha \theta \varepsilon \rho \varepsilon ́ \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~(37,9 \%) ~ к \alpha ı ~ o l ~ \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon ́ \varsigma ~$
 єрүабıккŋ́ $\delta \alpha \pi \alpha ́ v \eta ~ v \alpha ~ \varepsilon ́ i v \alpha ı ~ \sigma \tau о ~ 52,6 \% ~ \tau о v ~ \sigma v v o ́ \lambda о v . ~$

 $\kappa \alpha \theta \dot{\varsigma} \varsigma \kappa \alpha \iota ~ \sigma \tau \eta \nu \chi \rho \eta ́ \sigma \eta$ $\alpha \gamma \rho о \tau ı \kappa о и ́ ~ \tau \not \mu о \lambda о \gamma i ́ o v ~ \tau \eta \varsigma ~ \Delta \mathrm{EH}$.

Oı $\sigma \alpha 0 \varepsilon \rho \varepsilon ́ \varsigma ~ \delta \alpha \pi \alpha ́ v \varepsilon \varsigma ~ \alpha v \varepsilon ́ \rho \chi о v \tau \alpha \iota ~ \sigma \tau \iota \varsigma ~ 9.468,96 € ~ \mu \varepsilon ~ \tau ı \varsigma ~ \alpha \pi о \sigma \beta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ v \alpha ~ \varphi \theta \alpha ́ v o v v ~ \tau ı \varsigma ~ 3.765 €, ~$ то $39,7 \%$ тоv бvvó ${ }^{2}$ ov $\tau \omega v ~ \sigma \tau \alpha \theta \varepsilon \rho \omega ́ v ~ \delta \alpha \pi \alpha v ต ́ v . ~$

Н $\varepsilon \pi \varepsilon \vee \delta \cup \tau \iota \kappa \eta ́ ~ \delta \alpha \pi \alpha ́ v \eta \pi о v \alpha \pi \alpha ı \tau \varepsilon i ́ t \alpha ı ~ \varepsilon i ́ v \alpha ı ~ \mu \varepsilon \sigma \alpha i ́ \alpha ~ \pi \rho о \varsigma ~ v \psi \eta \lambda \eta ́ . ~ A v \tau o ́ ~ о \varphi \varepsilon i ́ \lambda \varepsilon \tau \alpha ı ~ \sigma \tau о ~ \gamma \varepsilon \gamma о v o ́ s$
 oı $\alpha \pi о \sigma \beta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \varepsilon i ́ v \alpha ı ~ v \psi \eta \lambda \varepsilon ́ \varsigma . ~ М \varepsilon ~ \tau о ~ \pi \varepsilon ́ \rho \alpha \sigma \mu \alpha ~ \tau о v ~ \chi \rho o ́ v o v ~ \theta \alpha ~ \pi \alpha \rho \alpha \tau \eta \rho \eta \theta \varepsilon i ́ ~ \mu \varepsilon i ́ \omega \sigma \eta, ~ \tau o ́ \sigma o ~ \sigma \tau ı \varsigma ~$

$\boldsymbol{\Sigma Y M П Е Р А \Sigma М А Т А ~}$

 $\alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma, ~ \tau о ~ 40 \% ~ \tau \eta \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma ı к \eta ́ \varsigma ~ \delta v v \alpha \tau о ́ \tau \eta \tau \alpha \varsigma ~ \tau о v ~ \theta \varepsilon \rho \mu о к \eta \pi i ́ o v . ~ Ү \pi о \lambda о \gamma i ́ \zeta \varepsilon \tau \alpha 1, ~ \pi \omega \varsigma ~ \mu \varepsilon ~$

 $\pi \rho о$ öv.

ВІВАІОГРАФІА

4. James W. Boodley. (1999), Ө $\varepsilon \rho \mu о \kappa \eta \pi \iota \alpha \kappa \varepsilon ́ \varsigma ~ \varepsilon \gamma к \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma, ~ E \kappa \delta o ́ \sigma \varepsilon ı \varsigma ' I \omega v, ~ A \theta \eta ́ v \alpha$.
 A.E., AӨŋ́va.

Internet:
http://www.minagric.gr/
https://www.ypaithros.gr/
https://www.geotee.gr
http://www.snaircorporation.com/
http://gr.rcsteeltube.com/
http://www.sari.gr

