

TEXNO $\triangle O Г I K O$ ЕКПАIДEYTIKO
I \triangle PYMA
$\Delta \Upsilon$ TIKH Σ
$\mathrm{E} \Lambda \Lambda \mathrm{A} \Delta \mathrm{A} \Sigma$

TMHMA TEXNO $О Г \Omega N$ ГЕЛПON

«Мєдغ́тๆ $\tau \eta \varsigma \quad \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \kappa о ́ \tau \eta \tau \alpha \varsigma \quad \alpha \pi о \mu о v \omega ́ \sigma \varepsilon \omega v$
 $\varepsilon \pi \mathrm{i}$ t $\tau \omega \mathrm{v}$ evtó $\mu \omega \mathrm{v}$ Ephestia kuehniella каı Trogoderma granarium»

POAH ANAETAEIA A.M. 11714

Елıß入દ́лоvб $\alpha \kappa \alpha \theta \eta \gamma \eta ́ \tau \rho \iota \alpha:$
$\Delta \rho$. Kapavaбтóбๆ Eıрŋ́vŋ

AMANIAAA 2018

 $\varepsilon \pi i ́ ~ \tau \omega v ~ \varepsilon v \tau o ́ \mu \omega v ~ E p h e s t i a ~ k u e h n i e l l a ~ к \alpha ı ~ T r o g o d e r m a ~$ granarium»

ПРОАОГОЕ

 бэүкєкрццє́vа:

 врүабías.

 $\sigma v \mu \pi \alpha \rho \alpha ́ \sigma \tau \alpha \sigma \eta ́ ~ \tau o v \varsigma ~ \mu о v ~ \varepsilon ́ \delta ı v \alpha v ~ \delta u ́ v \alpha \mu \eta ~ v \alpha ~ \sigma v v \varepsilon \chi i ́ \sigma \omega . ~$

H $\delta \varepsilon \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \varphi v ́ \sigma \varepsilon \omega \varsigma ~ \alpha \gamma \alpha \theta \alpha ́ ~ \pi \lambda \varepsilon i ́ o v \alpha ~ \delta \omega \rho \varepsilon i ́ \tau \alpha . ~ . ~$
ЕПIMAPХОГ 530-440 $\pi . \mathrm{X}$

ПEPIEXOMENA

ПРО $И О Г О \Sigma$. 3
KЕФА $\triangle A I O ~ A$ 6

1. ЕІ $\Sigma \mathrm{A} \Omega \Omega Г Н$ 6
 MOムYN $\Sigma H \Sigma$ АПOఆHKEYMEN Ω N ПPOÏONTתN 7
1.2 ENTOMA АПОఆНК Ω N 9
1.3 ВІО $Л О Г І К Н ~ A N T I M E T \Omega П I \Sigma Н ~$ 10
TO KO^EOПTEPO TROGODERMA GRANARIUM 11
1.4 H OIKOГENEIA DERMESTIDAE 11
1.4.1 Гعvıки́ 11
 13
1.4.3 Bıoдoүía عvтó μ ои 13
1.5 ТО $\Lambda Е П І \triangle О П Т Е Р О ~ E P H E S T I A ~ K U E H N I E L L A ~ A ~$ 14
1.5.1 $\Sigma v \sigma \tau \eta \mu \alpha \tau \iota \kappa \eta$ K $\alpha \tau \alpha ́ \tau \alpha \xi \eta$ 14
1.5.2 Bıодоүía тоט عvтó μ оv 14
1.5.3 Пароибí тоv عvто́ μ оv 16
1.6 ЕNTOМОПАӨОГОNOI MYКНТЕ Σ 16
1.6.1 О Ми́кŋтаऽ Beauveria bassiana 19
1.6.2 О Ми́кŋтаऽ Metarhizium anisopliae 21
1.6.3 О μ ט́кптая Isaria fumorosea 22
 24
KЕФА $\triangle A I O B$ 25
2. Y Λ IKA KAI ME $\Theta O \Delta O I$. 25
2.1 ЕКТРОФЕ Σ ENTOM Ω N 25
2.2 ENTOМОПАЄОГОNOI MYКНТЕ 25
2.2.1 ПАРАГKEYH ENAI $\Omega P H A T \Omega N$ MYKHT Ω N 26
2.3 ПЕIPAMATIKH Δ IA Δ IKA Σ IA 28
 28
2.3.2 $\Delta ı \alpha$ ıк $\alpha \sigma i ́ \alpha$ 28
2.3.3 $\Sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa \eta ́ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha$ 29
2.3.4 Алотє $\lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$ 29
2.3.5 $\Sigma v \zeta \eta \dot{\tau} \tau \sigma \eta$ 32
3. ВІВ \wedge IОГРАФІА 34
3.1 ヨєvó $\lambda \lambda \omega \sigma \sigma$ 34
3.2 Е $\lambda \lambda \eta \nu \iota \kappa \eta ́$ 39

КЕФАААIO А

1. ЕІІАГЛГН

 $\alpha \gamma \rho о \tau \iota \kappa \ldots ́ v ~ \pi \rho о і ̈ o ́ v \tau \omega v ~ \varepsilon i ́ v \alpha ı ~ \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \varphi о \rho \varepsilon ́ \varsigma ~ к ข р ı о \lambda \varepsilon к \tau ı к \alpha ́ ~ \alpha v \varepsilon \pi \alpha \alpha v o ́ p \theta \omega \tau \varepsilon \varsigma . ~$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \eta ́ ~ \tau \eta \varsigma ~ \alpha \pi о ө \eta ́ к \varepsilon v \sigma \eta \varsigma ~ \tau о ч \varsigma . ~ T \alpha ~ \varepsilon ́ v \tau о \mu \alpha ~ \alpha \pi о \theta \eta к ळ ́ v ~ \mu \pi о р о и ́ \mu \varepsilon ~ v \alpha ~ \tau \alpha ~$

 бט́к $\alpha, ~ \sigma \tau \alpha \varphi i ́ \delta \varepsilon \varsigma, ~ \kappa \alpha \pi v о ́, ~ \kappa \alpha \kappa \alpha ́ o) . ~$
 η ŋ́ $\eta \quad \pi \rho о \sigma \beta \varepsilon \beta \lambda \eta \mu \varepsilon ́ v o v s ~ \sigma \pi o ́ \rho o v s ~(\pi . \chi . ~ T r i b o l i u m ~ c o n f u s u m, ~ O r y z a e p h i l u s ~$ surinamensis).
 بóvo $\sigma \pi$ о́ро (Sitophilus granarius). $\Sigma \chi \varepsilon \delta o ́ v ~ o ́ \lambda \alpha ~ \tau \alpha ~ \lambda \varepsilon \pi ı \delta o ́ \pi \tau \varepsilon \rho \alpha ~ \sigma \chi \eta \mu \alpha i \zeta ̆ \zeta o v ~$
 Pyralis farinalis, Corcyca cephalonica к. $\mathbf{\alpha}$.).

 $\alpha \pi$ оӨๆквитıкои́я χ ต́роия（Пívакац 1）．

 Lasioderma serricorne，Trogoderma granarium，Tribolium confusum к． $\mathrm{a}^{\text {．）．}} \Sigma \varepsilon$
 そそ́бouv．

1．1 OIKOАОГIKE $\Sigma Y N \Theta H K E \Sigma ~ E N T O M O \Lambda O Г I K \Omega N ~$ ПPOЕВOムЛN KAI TPOПOI MOムYNさHट AПOఆHKEYMEN日N ПPOÏONTQN

 $\varepsilon \gamma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \theta \eta \kappa \alpha v \sigma^{\prime} \alpha v \tau \varepsilon ́ \varsigma . ~ A v \tau o ́ ~ \varepsilon i ́ \chi \varepsilon ~ \sigma \alpha v ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ v \alpha ~ \chi \alpha ́ \sigma o v v ~ \eta ́ ~ v \alpha ~ \varepsilon ́ \chi o v v$

 oryzae．

EIUOE	KOINO ONOMA	OIKOГENEIA
A．KO＾EOПTEPA		
Lasioderma serricorne		Anodiidae
Sitophilus granarius		Curculionidae
Sitophilus oryzae	ГкаӨápı тоv ρ ¢̧̧ıov́	Curculionidae
Acanthoscelides obtectus		Bruchidae
Bruchus pisorum		Bruchidae
Bruchus lentis		Bruchidae
Oryzaephilus surinamensis	Чعíp α qov $\sigma \tau \alpha \rho ı$ ט́	Sylvanidae
Trogoderma granarium		Dermestidae
Trogoderma inclusum		Dermestidae
Tenebrioides mauritanicus	$\Sigma \kappa \alpha \theta \dot{\alpha} \rho ı \tau \omega \nu$ оло́p ωv	Trogostidae
Rhizopertha dominica	ГкаӨápı тоv ρ ¢̧̧ov́	Bostrychidae
Tribolium confusum	Чغípa ท́ $\sigma \kappa \alpha \theta \dot{\alpha} \rho ı ~ \tau \omega v$ $\alpha \lambda \varepsilon u ́ \rho \omega v$	Tenebrionidae
Tribolium castaneum	Σ коv́ро бкаӨд́pı $\tau \omega v$ $\alpha \lambda \varepsilon v ́ \rho \omega v$	Tenebrionidae
B．Λ EПIDOПTEPA		
Ephestia elutella	Гко৩入и́кı калレоט́ ๆ́ како́о	Pyralididae
Ephestia kuehniella	$\Sigma \kappa о \cup \lambda \eta ́ \kappa 1 ~ \tau \omega \nu ~ \alpha \lambda \varepsilon ט ́ \rho \omega \nu$	Pyralididae
Ephestia cautella	$\Sigma \kappa о \cup \lambda \eta \dot{\kappa \iota} \sigma$ ќкळv， бтафíठая	Pyralididae
Sitotroga cerealella		Geleghiidae
Г．АIITEPA		
Piophila casei	ミкоง入и́кı тоv тupıó	Piophilidae
D．AKAPEA		
Acarus siro	Aко́pı $\tau \omega v \alpha \lambda \varepsilon \cup ์ \rho \omega v$	Acaridae

 Lasioderma serricorne, Trogoderma granarium, Tribolium confusum, Palorus sp.

 Tribolium sp. 乌ovv каı $\alpha v \alpha \pi \alpha \rho \alpha ́ \gamma о v \tau \alpha ı ~ \sigma \varepsilon ~ \pi \rho о і ̈ o ́ v \tau \alpha ~ \mu ı к \rho \eta ́ s ~ \pi \varepsilon \rho ı \varepsilon к \tau є к ́ т \eta \tau \alpha \varsigma ~ \sigma \varepsilon ~$ vүрабía ($\alpha \lambda \varepsilon v \rho \alpha, \gamma \alpha \lambda \varepsilon ́ \tau \alpha$), $\varepsilon v \omega ́ ~ \alpha ́ \lambda \lambda \alpha$, ó $\pi \omega \varsigma ~ \tau \alpha$ Sitophilus sp. $\delta \varepsilon v \mu \pi 0 \rho o v ́ v v \alpha$

1.2 ENTOMA АПОఆНК

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma ~ \eta ́ ~ \tau \eta \varsigma ~ \alpha \pi о Ө \eta ́ к \varepsilon v \sigma \eta \varsigma ~ \tau о ч \varsigma . ~ Т а ~ \varepsilon ́ v \tau о \mu \alpha ~ \alpha \pi о Ө \eta к ळ ́ v ~ \mu \pi о р о и ́ \mu \varepsilon ~ v \alpha ~ \tau \alpha ~$

 $\alpha \pi о \tau \varepsilon \lambda 0$ v́v $\tau \alpha$ عíঠף: Lasioderma serricorne, Trogoderma granarium, Tribolium

1.3 BIOАОГIKH ANTIMETএПIГH

 $\tau \eta \varsigma \lambda \varepsilon i ́ \alpha \varsigma$ ($Ө \eta \rho \alpha ́ \mu \alpha \tau \circ \varsigma) \tau о \cup \varsigma$.

 $\nu \eta \mu \alpha \tau \dot{\delta} \varepsilon \varepsilon \varsigma$.

Eıкóva 1. EлávӨıఠๆ тоv عvтонот α обо́vov μ о́кпта Beauveria bassiana, $\sigma \varepsilon$ عvŋ́ $\lambda_{1 \kappa \alpha} \alpha \dot{\alpha} \tau о \mu \alpha$ Rhynchophorus ferrugineus (Kovтоঠŋ́ $\mu \alpha \varsigma 1998)$.

Eıкóva 2. Eлávөıฮๆ тоט єขтонолаӨобо́vov μ и́кп $\tau \alpha$ Metarhizium anisopliae $\sigma \varepsilon \varepsilon v \emptyset ́ \lambda ı к \alpha \alpha ́ \tau о \mu \alpha$ Rhynchophorus ferrugineus (Kovтоঠ́ŋ́ α с 1998).

Bıо入оүıкй Avtıцєтஸ́тıоп

 тро́лоия (Kоvтобท́цац 1998).

TO KO^ЕОПTEPO TROGODERMA GRANARIUM

1.4 H OIKOГENEIA DERMESTIDAE

1.4.1 Гعvıки́

 $1,5 \mathrm{~mm}$.

1.4.3 Bıддоүía evtó $\mu 0 v$

 $\nu \alpha$ архі́бєı $\sigma \varepsilon \mu i ́ \alpha$ દ́ $\omega \varsigma ~ \tau \rho \varepsilon ı \varsigma ~ \eta \mu \varepsilon ́ \rho \varepsilon \varsigma ~ \sigma \varepsilon ~ \psi v \chi \rho о ́ \tau \varepsilon \rho \varepsilon \varsigma ~ Ө \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \varepsilon \varsigma, ~ а \lambda \lambda \alpha ́ ~ \delta \varepsilon v ~$

 $\pi \varepsilon \rho i ́ o \delta o ~ \eta ́ ~ \varepsilon \alpha ́ v ~ o r ~ \pi \rho о v v ́ \mu \varphi \varepsilon \varsigma ~ \varepsilon i ́ v \alpha ı ~ \pi о \lambda v ́ ~ \gamma \varepsilon \mu \alpha ́ \tau \varepsilon \varsigma, ~ \mu \pi о \rho \varepsilon i ́ v \alpha ~ \varepsilon ו \sigma \varepsilon ́ \lambda \theta o v v ~ \sigma \varepsilon ~ \delta \iota \alpha ́ \pi \alpha v \sigma \eta . ~$

B) Акцаío тоט кодєолтє́роv T. granarium

1.5 TO АЕПIДОПTEPO EPHESTIA KUEHNIELLA

1.5.1 $\Sigma v \sigma \tau \eta \mu \alpha \tau \iota \neq$ К $\alpha \tau \alpha ́ \tau \alpha \xi \eta$

Táğף: Lepidoptera
Y π ót $\alpha \xi \eta$: Heteroneura
Oıкоүદ́vєıa: Pyralidae

A $\gamma \gamma \lambda_{1 \kappa} \mathfrak{\prime}$ Ovoцабía: Mediterranean flour moth

1.5.2 Bıoдoүía $\tau 0 v$ evtó μ ov

 ขло́えєико $\mu \varepsilon \kappa \alpha \sigma \tau \alpha v \alpha ́ \pi \tau \varepsilon ́ \rho \cup \gamma \varepsilon \varsigma ~ \varepsilon ́ \chi о v v ~ v \varepsilon v ́ \rho \alpha . ~$
 $\chi \rho \omega ́ \mu \alpha$ vлоро́ঠıvo, $\varepsilon v \omega ́ ~ \eta ~ к \varepsilon \varphi \alpha \lambda \eta ́ ~ к \alpha \sigma \tau \alpha v o ́ . ~$

 $\kappa \alpha ı ~ \alpha v \alpha \pi \tau v ́ \sigma \sigma о v \tau \alpha 1 . ~ М \varepsilon ~ \alpha v \tau o ́ v ~ \tau о v ~ \tau \rho о ́ \pi о ~ \rho v \pi \alpha i ́ v o v v, ~ \pi \rho о к \alpha \lambda о и ́ v ~ \zeta \nu \mu ஸ ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau \alpha ~$ $\alpha \dot{\lambda} \lambda \varepsilon \cup \rho \alpha \kappa \alpha ı \tau \alpha$ vлоßа日нí̧ovv.

Eıкóva 5. Aкцаío tov Ephestia kuehniella $\alpha \pi$ то бтєрєобко́тıо тоv Eрүабтŋрíov Фитотробтабі́ац - Фарнакодоүías тои TEI $\Delta \nu \tau \iota \kappa \grave{́}$ Е $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$.

Eıко́va 6. Проvט́црך тоv $\lambda \varepsilon \pi \iota \delta$ олтє́рои Ephestia kuehniella aло́ тоv Epүабтпрíov Фитолробтабі́аs - Фариакодоүі́аs тои TEI $\Delta v \tau \iota \kappa \check{\varsigma}$ E $\lambda \lambda \alpha ́ \delta \alpha \varsigma$.

1.5.3 Пароvбía $\tau 0 v$ عvтó $\mu о v$

 4-6 عßסо $\mu \alpha ́ \delta \varepsilon \varsigma ~(40 ~ \eta \mu \varepsilon ́ \rho \varepsilon \varsigma) ~ \sigma \tau o v \varsigma ~ 25^{\circ} \mathrm{C}$.

1.6 ENTOMOПАఆOГОNOI МYКНТЕ

 каı $\pi \alpha \rho \alpha ́ \sigma ı \tau \alpha ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~ к и ́ \rho ı o ı ~ \rho v \theta \mu ı \sigma \tau \varepsilon ́ \varsigma ~ \tau \eta \varsigma ~ \imath \sigma о \rho \rho о \pi i ́ \alpha \varsigma ~ \pi о v ~ v \varphi i ́ \sigma \tau \alpha \tau \alpha ı ~ \sigma \tau о v ~$

 каı $\alpha v \alpha \pi \alpha \rho \alpha ́ \gamma о v \tau \alpha 1 . ~ Н ~ \varepsilon ו \sigma \beta о \lambda \eta ́ ~ \tau о v ~ \mu v ́ к \eta \tau \alpha ~ \sigma \tau о ~ \sigma ต ́ \mu \alpha ~ \tau о v ~ \varepsilon v \tau o ́ \mu о v ~ к \alpha ı ~ \sigma \tau о ~$

 $\varepsilon \xi \varepsilon$ ह́p
 $\varepsilon \sigma \omega \tau \varepsilon \rho \iota к \alpha ́ ~ \tau о v ~ \varepsilon \nu \tau о ́ \mu о v, ~ о ́ \tau \alpha \nu ~ \eta ~ \alpha \tau \mu о \sigma \varphi \alpha ı \rho ı к и ̆ ~ v \gamma \rho \alpha \sigma i ́ \alpha ~ \varepsilon \mu \pi о \delta i ́ \zeta \varepsilon ı ~ \tau \eta \nu ~ \varepsilon \xi \omega \tau \varepsilon \rho ı к \eta ́ ~$ $\sigma \pi о \rho о \pi \alpha \rho \alpha \gamma \omega \gamma$ ๆ́.

 $\pi \rho о \sigma \beta$ о λ и́s $\tau \omega v \varepsilon \pi \iota \beta \lambda \alpha \beta \dot{\rho} v \varepsilon \iota \delta \omega ́ v)$

 $\theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \varsigma)$
 актıvоßо入ía)

 Oı $\mu о \rho \varphi \varepsilon ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau ข \pi о \pi о і ́ \eta \sigma \eta \varsigma ~ \varepsilon i ́ v \alpha l ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \varepsilon \varsigma ~ \gamma ı \alpha ~ \tau \eta \nu ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ~ \tau \omega v ~ \beta ı \lambda о \gamma ı к ळ ́ v ~$

$\varepsilon \varphi \alpha \rho \mu о \sigma \tau о v ์ v ~ \sigma \varepsilon ~ \sigma v v \theta \emptyset ́ \kappa \varepsilon \varsigma ~ \alpha \gamma \rho о v ́, ~ \sigma \varepsilon ~ \sigma \kappa \varepsilon v \alpha ́ \sigma \mu \alpha \tau \alpha ~ \varepsilon \lambda \alpha i ́ o v ~ \mu \varepsilon ~ \psi \varepsilon к \alpha \sigma \mu о ́ ~ v \pi \varepsilon ́ \rho \mu ı к \rho о v ~$

 $\varepsilon \pi \alpha \rho \kappa \eta ́ ~ \pi \alpha \rho о \nu \sigma i ́ \alpha ~ v \varepsilon \rho о v ́ ~ \eta ́ ~ v \psi \eta \lambda \eta ́ ~ v \gamma \rho \alpha \sigma i ́ \alpha ~ \gamma l \alpha ~ \tau \eta v ~ \beta \lambda \alpha ́ \sigma \tau \eta \sigma \eta ~ \tau \omega v ~ \sigma \pi о \rho i ́ \omega v$. Mi α

 $\varepsilon \xi \alpha \tau \mu i ́ \zeta \varepsilon \tau \alpha l ~ \gamma \rho \eta ́ \gamma \circ \rho \alpha$ ót $\alpha v \varepsilon \varphi \alpha \rho \mu o ́ \zeta \varepsilon \tau \alpha l ~ \sigma \alpha v \lambda \varepsilon \pi \tau \varepsilon ́ \varsigma ~ \sigma \tau \alpha \gamma o ́ v \varepsilon \varsigma . ~ H ~ \tau v \pi о \pi о i ́ \eta \sigma \eta ~ \sigma \varepsilon ~ \varepsilon ́ \lambda \alpha ı \alpha$

О $\mu v ́ \kappa \eta \tau \alpha \varsigma ~ B e a u v e r i a ~ b a s s i a n a ~ B a l s a m o ~(V u i l l e m i n) ~(H y p o c r e a l e s: ~$

$\kappa \alpha ı ~ v \gamma \rho \alpha \sigma i ́ \alpha \varsigma ~ \tau \alpha ~ \sigma \pi o ́ \rho ı \alpha ~ \pi о v ~ \pi \alpha \rho \alpha \mu \varepsilon ́ v o v v ~ \sigma \tau \eta \nu ~ \varepsilon \pi ı \delta \varepsilon \rho \mu i ́ \delta \alpha ~ \tau \omega v ~ \xi \varepsilon v ı \sigma \tau \dot{v} v, \beta \lambda \alpha \sigma \tau \alpha ́ v o v v$

 $\alpha \dot{\alpha} \omega 135^{\circ} \mathrm{C} \delta \varepsilon \nu \pi \alpha \rho \alpha ́ \gamma o \nu \tau \alpha \imath$ (Eıк 7)

 т \quad в λ ío Petri.

1.6.2 О Ми́кŋтаৎ тov үย́vov̧ Metarhizium

О μ и́кŋтаى Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) $\alpha v \alpha \pi \tau v ́ \sigma \sigma \varepsilon \tau \alpha \imath ~ \sigma \tau о ~ \varepsilon ́ \delta \alpha \varphi о \varsigma ~ к \alpha ı ~ \pi \rho о \sigma \beta \alpha ́ \lambda \lambda \varepsilon \imath ~ \delta ı \alpha ́ \varphi о \rho \alpha ~ \varepsilon ́ v \tau о \mu \alpha ~$

 $\pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha \iota ~ \eta ~ \varepsilon \pi ı \delta \varepsilon \mu i ́ \delta \alpha ~ \tau о v ~ \varepsilon v \tau o ́ \mu о v ~ к \alpha ı ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha \pi \varepsilon \lambda \varepsilon v \theta \varepsilon \rho ต ́ v \varepsilon є ~ \sigma \pi o ́ \rho ı \alpha ~ v \pi o ́ ~$

 $\chi \rho о v ı \kappa o ́ ~ \delta \iota \alpha ́ \sigma \tau \eta \mu \alpha \mu \varepsilon \tau \alpha \chi \rho \omega \mu \alpha \tau i \zeta \varepsilon \tau \alpha \iota \sigma \varepsilon \pi \rho \alpha ́ \sigma ı v \eta$.

 vто́бтрต μ.

 $\sigma \chi \eta \mu \alpha \tau i ́ \zeta \varepsilon \imath ~ \sigma \pi o ́ \rho ı \alpha . ~ Н ~ v ү \rho \alpha \sigma i ́ \alpha ~ \pi о v ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ v \alpha ~ \varepsilon \pi ı к р \alpha \tau \varepsilon i ́, ~ \pi \rho о к \varepsilon \mu \varepsilon ́ v о v ~ о ~ \mu v ́ к \eta \tau \alpha \varsigma ~ v, ~$

 $\alpha \dot{\alpha} \lambda \lambda$ о $\pi \rho ı v \alpha \kappa o ́ \mu \alpha \pi \rho о \lambda \alpha ́ \beta \varepsilon ı$ о $\mu v ́ \kappa \eta \tau \alpha \varsigma ~ v \alpha ~ \delta ı \alpha \pi \varepsilon \rho \alpha ́ \sigma \varepsilon \iota \imath ~ \tau \eta v ~ \varepsilon \pi ı \delta \varepsilon \rho \mu i ́ \delta \alpha . ~$

Avó $\mu \varepsilon \sigma \alpha$ बтovs $\varepsilon v \tau о \mu о \pi \alpha \theta$ oүóvovs $\mu v ́ \kappa \eta \tau \varepsilon \varsigma ~ \pi о v ~ \mu \varepsilon ́ \chi \rho ı ~ \sigma \tau \imath \gamma \mu \eta ́ \varsigma ~ \varepsilon ́ \chi о v v ~$ $\alpha v \alpha \gamma \vee \omega \rho \iota \tau \varepsilon i ́ ~ \kappa \alpha ı ~ \tau \alpha \xi ı v o \mu \eta \theta \varepsilon i ́, ~ \tau \alpha ~ \gamma \varepsilon ́ v \eta ~ B e a u v e r i a ~ \kappa \alpha ı ~ M e t a r h i z i u m ~ \varepsilon i ́ v \alpha ı ~ \mu \alpha ́ \lambda \lambda \lambda o v ~ \tau \alpha ~$

 $\sigma \alpha \nu \alpha \tau \varepsilon \lambda \varepsilon i ́ s$. О $\mu \circ \lambda \nu \sigma \mu \alpha \tau \iota \kappa o ́ s ~ к v ́ \kappa \lambda о \varsigma ~ \tau \omega v ~ \varepsilon v ~ \lambda o ́ \gamma \omega ~ \mu \nu к \eta ́ \tau \omega v ~ \pi о v ~ \pi \varepsilon \rho \lambda \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \tau \eta v$

O I. fumosorosea, خ́ PPEI, $\theta \varepsilon \omega \rho \varepsilon i ́ \tau \alpha ı ~ \alpha \pi o ́ ~ \tau o v \varsigma ~ \varepsilon \pi \iota \sigma \tau \eta ́ \mu о \nu \varepsilon \varsigma ~ \sigma \alpha \nu ~ \pi о \lambda \lambda \alpha ́$

 $\sigma \varepsilon$ vүрó vло́бт $\rho \omega \mu \alpha$.

1.7 ГКОПОГ THГ MEへETH

 $\varepsilon \nu \tau о \mu о \pi \alpha$ Өоүо́vตv $\mu \nu \kappa \eta ́ \tau \omega v$.

КЕФАААIO В

2. Y

2.1 ЕКТРОФЕะ ENTOM日N

 $\tau \omega v \pi \rho о v \nu \mu \varphi \dot{\rho} v$.

 $\delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~ \varepsilon \pi \alpha v \alpha \lambda \alpha \mu \beta \alpha ́ v \varepsilon \tau \alpha 1$.

2.2 ENTOMOПА@ОГОNOI MYKHTE Σ

 $\mu ஸ ́ \kappa \eta \tau \varepsilon \varsigma$ Beauveria bassiana Balsamo (Vuillemin) (Hypocreales: Cordycitaceae,

Metarhizium robertsii (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) kaı Isaria fumosorosea (Wize) Brown \& Smith (Hypocreales: Clavicipitaceae) $\alpha \pi o ́ \tau \eta \nu$
 Petri $\varepsilon \pi i ́ ~ \theta \rho \varepsilon \pi \tau \iota к о v ́ ~ v \lambda ı к о v ́ ~ S D A ~(S a b o u r a u d ~ D e x t r o s e A g a r, ~ S i g m a ~-~ A l d r i c h) ~ \sigma \varepsilon ~$ $\theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \varepsilon \varsigma ~ 5 \pm 1{ }^{\circ} \mathrm{C}$ каı $\alpha v \alpha v \varepsilon ต ́ v o v \tau \alpha v \kappa \alpha ́ \theta \varepsilon \mu \eta ́ v \alpha$ (Eıк. 21). Oı $\varepsilon v \tau о \mu о \pi \alpha \theta$ оүóvo七
 Galleria mellonella $\omega \varsigma$ סó $\lambda \omega \mu \alpha$) (Zimmermann 1986), каı $\tau \eta \mu \varepsilon ́ \theta o \delta o ~ \tau \omega \nu$

2.2.1 ПАРАГКЕYH ENAI

Прокєцє́vоv va $\pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau о v ́ v ~ \tau \alpha ~ \varepsilon v \alpha ı \omega \rho \eta ́ \mu \alpha \tau \alpha ~ \gamma ı \alpha ~ \tau ı \zeta ~ \alpha v \alpha ́ \gamma к \varepsilon \varsigma ~ \tau \omega v$

 $\alpha \sigma \varphi \alpha \lambda ı \sigma \mu \varepsilon ́ v \alpha \mu \varepsilon \mu \varepsilon \mu \beta \rho \alpha ́ v \eta$ Parafilm $\gamma 1 \alpha$ v $\alpha \pi \rho о \sigma \tau \alpha \tau \varepsilon v \tau \tau v ́ v ~ \alpha \pi o ́ ~ \varepsilon \pi ı \mu \nu \lambda$ v́vбєı૬. To $\theta \rho \varepsilon \pi \tau \iota \kappa o ́ ~ v \lambda \iota \kappa o ́ ~ S a b o u r a u d ~ D e x t o s e ~ A g a r, ~ \pi \rho о \sigma \alpha \rho \mu o ́ \sigma \tau \eta \kappa \varepsilon ~ \varepsilon v ~ \mu \varepsilon ́ \rho \varepsilon ı ~ \gamma ı \alpha ~ \tau \eta ~$

 бvvӨŋ́кєऽ ($0,2 \mathrm{ml} / 100 \mathrm{ml}$ тоv $\mu \varepsilon ́ \sigma о v) . ~ Г ı \alpha ~ v \alpha ~ \pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha \sigma \theta o u ́ v ~ o l ~ \varepsilon \pi \imath \theta \nu \mu \eta \tau \varepsilon ́ \varsigma ~$
 тоv $\delta 1 \alpha \lambda ט ́ \mu \alpha \tau \circ \varsigma ~ \pi \rho о \sigma \tau \varepsilon ́ \theta \eta \kappa \alpha \nu ~ \sigma \varepsilon ~ 9 m l ~ \alpha \pi о \sigma \tau \alpha \gamma \mu \varepsilon ́ v o v ~ v \varepsilon \rho о v ́, ~ \gamma i \alpha ~ v \alpha ~ \delta \omega ́ \sigma o v v ~ \varepsilon ́ v \alpha ~$ ठıó $\lambda v \mu \alpha$, то олоío $\pi \varepsilon \rho เ \varepsilon i ́ \chi \varepsilon ~ 10.000 ~ m i c r o g r a m s ~ \sigma \tau \rho \varepsilon \pi \tau о \mu \nu к i ́ v \eta s ~ / ~ m l . ~ \Sigma \tau о ~ к \alpha ́ ~ \theta \varepsilon ~ \lambda i ́ \tau \rho о ~$

 Bacto- Sabouraud Dextrose Agar $\sigma \varepsilon 1000 \mathrm{ml}$ крv́ov $\alpha \pi о \sigma \tau \varepsilon 卬 \rho \mu \varepsilon ́ v o v ~ v \varepsilon \rho о v ́ ~ к \alpha ı ~$

 Inglis 1997, Quesada - Moraga etal. 2007). $\Sigma \tau \eta v ~ \sigma v v \varepsilon ́ \chi \varepsilon ı \alpha ~ \sigma \varepsilon ~ о л \tau \iota к о ́ ~ \mu к к о б к о ́ \pi ı о ~$

 (17).

2.3 ПЕIPAMATIKH $\boldsymbol{\Delta I A} \Delta I K A \Sigma I A$

 $\pi \lambda \eta \theta v \sigma \mu$ о́ π оv $\chi \rho \varepsilon \iota \alpha ́ \sigma \tau \eta \kappa \varepsilon ~ \gamma 1 \alpha ~ \tau о ~ \pi \varepsilon і ́ \rho \alpha \mu \alpha . ~ Н ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \tau о v ~ \pi \varepsilon ı \rho \alpha ́ \mu \alpha \tau о \varsigma ~ \varepsilon ́ \gamma ı v \varepsilon ~ v \pi o ́ ~$ $\alpha \sigma \eta \pi \tau \iota \kappa \varepsilon ́ \varsigma ~ \sigma v v \theta \eta ́ \kappa \varepsilon \varsigma ~ \gamma ı \alpha \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ~ \alpha \pi o ́ ~ \varepsilon \pi \mu \mu о \lambda ण ́ v \sigma \varepsilon ı \varsigma$.

 $\pi \rho о і ̈ o ́ v \tau \omega v)$

- Пŋ \quad ๆ́ $\varphi \omega \tau$ о́ ($\gamma 1 \alpha \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta$ ó $\rho \alpha \sigma \eta \varsigma)$

- Zú \quad оs акрıßвías
- Tpußスía Petri 9cm Φ
- $\quad \Pi \lambda \alpha \sigma \tau ı \alpha \dot{\alpha} \lambda \varepsilon \cup \kappa \alpha ́ ~ \delta о \chi \varepsilon i ́ \alpha ~-~ \mu \pi о \lambda ~(\pi о \lambda \lambda \alpha \pi \lambda \omega ́ v ~ \chi \rho \eta ́ \sigma \varepsilon \omega v) ~$
- $\quad \Lambda \alpha \beta i ́ \delta \varepsilon \varsigma$

- $\mathrm{A} \imath \theta \alpha v o ́ \lambda \eta$
- Avacouıќ $\beta \varepsilon \lambda o ́ v \alpha$
- Taıvía Parafilm
- Чєкабти́คец $\chi \varepsilon \iota \rho o ́ s ~ o ́ \gamma к о v ~ 500 m l . ~$

2.3.2 $\Delta เ \alpha \delta เ к \alpha \sigma i ́ \alpha$

 $\psi \varepsilon \kappa \alpha ́ \zeta o v \tau \alpha \nu \alpha \pi \varepsilon v \theta \varepsilon i ́ \alpha \varsigma ~ \mu \varepsilon$ то $\varepsilon v \alpha i \omega ́ \rho \eta \mu \alpha ~ \tau \omega v ~ \kappa o v i \delta i ́ \omega v, ~ \mu \varepsilon ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta$ $\alpha \pi о \sigma \tau \varepsilon \iota \rho \omega \mu \varepsilon ́ v o v ~ \psi \varepsilon \kappa \alpha \sigma \tau \eta ์ \rho \alpha ~ \chi \varepsilon \iota \rho o ́ s ~ o ́ \gamma к о v ~ 500 \mathrm{ml}$.

 коvı $\delta i ́ \omega v$.
 $\pi \rho о к \alpha \lambda \varepsilon ́ \sigma \varepsilon \iota ~ \mu o ́ \lambda \nu v \sigma \eta ~ \sigma \tau о ~ \pi \rho о$ óv), $\mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho о v \tau \alpha \nu ~ \sigma \tau \alpha ~ \tau \rho \cup \beta \lambda i ́ \alpha ~ P e t r i, ~ \tau \alpha ~ о \pi о i ́ \alpha ~$ $\sigma \tau \eta ~ \sigma v v \varepsilon ́ \chi \varepsilon ı \alpha ~ \sigma \varphi \rho \alpha \gamma i ́ \zeta o v \tau \alpha v \mu \varepsilon \tau \alpha ı v i ́ \alpha$ Parafilm.

> Еv $\sigma v v \varepsilon \chi \varepsilon i ́ \alpha, ~ к \alpha ́ \theta \varepsilon ~ v \varepsilon к \rho o ́ ~ \alpha ́ \tau о \mu о ~ \alpha \pi о \lambda ง \mu \alpha i ́ v o v \tau \alpha \nu ~ \sigma \varepsilon ~ \delta \iota \alpha ́ \lambda \nu \mu \alpha ~ v \delta \rho о \chi \lambda \omega \rho ı к о v ́ ~$ va兀рíov каl $\xi \varepsilon \pi \lambda \varepsilon ́ v o v \tau \alpha \nu ~ \mu \varepsilon ~ \alpha \pi ı o v ı \sigma \mu \varepsilon ́ v o ~ v \varepsilon \rho o ́ ~ к \alpha l ~ \alpha \pi о \mu о v ต v o ́ \tau \alpha v ~ \sigma \varepsilon ~ v \varepsilon ́ o ~$
 $\varepsilon \alpha ́ v \eta$ α ıтí $\theta \alpha v \alpha ́ \tau о v ~ \eta ́ \tau \alpha v ~ \eta ~ \pi \rho о \sigma \beta о \lambda \eta ́ ~ \alpha \pi o ́ ~ \tau о \nu ~ \mu v ́ к \eta \tau \alpha . ~$

2.3.3 $\Sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa \eta ์ ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i ́ \alpha$

Н $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa o ́ \tau \eta \tau \alpha$ ó $\lambda \omega \nu \tau \omega \nu \sigma \tau \varepsilon \lambda \varepsilon \chi \omega ́ v \tau \omega \nu \mu \nu \kappa \eta ́ \tau \omega \nu \varepsilon \pi i ́ \tau \omega \nu \pi \rho о \nu \nu \mu \varphi \dot{\nu}$
 $\pi \alpha \kappa \varepsilon ́ \tau o ~ I B M S P S S ~(I B M c o p ., ~ I L, ~ U S A, ~ v e r s i o n 23.0) ~ \chi \rho \eta \sigma \mu о т о џ ́ ө \eta к \varepsilon ~ \gamma 1 \alpha ~ \tau \eta \nu$

 $\chi \rho o ́ v o s ~ \varepsilon \pi \iota \beta i ́ \omega \sigma \eta \varsigma ~ \tau \omega v ~ \pi \rho o v v \mu \varphi \omega ́ v ~ \tau \omega v ~ \varepsilon v \tau o ́ \mu \omega v ~ T . ~ g r a n a r i u m ~ к \alpha ı ~ E . ~ k u e h n i e l l a ~$
 (Gehan).

2.3.4 А $\pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$

H $\alpha v \alpha ́ \lambda \nu \sigma \eta ~ \varepsilon \pi ィ \beta i ́ \omega \sigma \eta \varsigma ~ K a p l a n-M e i e r ~(W i l c o x o n ~(G e h a n)) ~ \gamma l \alpha ~ \tau o ~ \sigma ı \tau \alpha ́ \rho ı, ~$

 $\tau \omega v \varepsilon \tau \tau о ́ \mu \omega v$ T. granarium каı E. kuehniella $\sigma \varepsilon$ врүабтпрıккє́ $\sigma \cup v \theta \eta ́ \kappa \varepsilon \varsigma ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta \nu$ $\varepsilon \pi i ́ \delta \rho \alpha \sigma \eta \tau \omega \nu$ عvтоцолаӨоүóvตv $\mu \nu \kappa \dot{\tau} \tau \omega \nu\left(25^{\circ} \mathrm{C}\right.$, RH 70\%) ($\mathrm{n}=30$) (Wilcoxon (Gehan) 12: I. fumosorosea, 17: M. anisopliae var anisopliae, 18: B. bassiana.

[^0]
 $\varepsilon \pi ィ i ́ \omega \sigma \eta \varsigma \quad$ (Kaplan-Meier) $\tau \omega \nu \quad \pi \rho о \nu \nu \mu \varphi \omega ́ \quad \tau \omega \nu$ عขто́ $\mu \omega v$ T. granarium каı E. kuehniella $\sigma \varepsilon$ عрүабтпрıккє́s бטvӨŋ́кєऽ $\mu \varepsilon \tau \alpha ́ \tau \eta v \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$ $\tau \omega v$ عvтоцолаӨоүо́vตv $\mu \nu \kappa \eta ́ \tau \omega \nu\left(25^{\circ} \mathrm{C}\right.$, RH 70\%) $(\mathrm{n}=30)$ (Wilcoxon (Gehan): 12: I. fumosorosea, 17: M. anisopliae var anisopliae, 18: B. bassiana
 $\alpha \nu \alpha ́ \pi \rho о$ öv. H $\varepsilon \pi i ́ \delta \rho \alpha \sigma \eta \mu \varepsilon$ тоv $\mu v ́ \kappa \eta \tau \alpha 17$ (Metarhizium anisopliae) η ๆ́ $\alpha \nu \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta$

 var anisopliae, 18: B. bassiana

		Wilcox	df	Sig.
Control	12	63,547	1	,000
	17	71,858	1	,000
	18	81,871	1	,000
12	0	63,547	1	,000
	17	,853	1	,356
	18	3,912	1	,048
17	0	71,858	1	,000
	12	,853	1	,356
	18	1,174	1	,279
18	0	81,871	1	,000
	12	3,912	1	,048
	17	1,174	1	,279

2.3.5 $\mathbf{\Sigma v \zeta \eta ́ \tau \eta \sigma \eta ~}$

 $\sigma \omega \lambda \eta ́ v \alpha$ лоv غ́ $\chi \varepsilon ı ~ \omega \varsigma ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ ol $\varepsilon v \tau о \mu о \pi \alpha \theta$ оүóvoı $\mu v ́ \kappa \eta \tau \varepsilon \varsigma ~ v \alpha ~ \varepsilon ו \sigma \varepsilon ́ \rho \chi о v \tau \alpha ı ~ \sigma \tau \eta v$

 $\alpha v \tau \dot{v}$ (Inglis et al. 2001, Er et al. 2007).
$\Sigma \tau \eta \nu \pi \alpha \rho о v ́ \sigma \alpha \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \varepsilon ́ \gamma เ v \varepsilon \mu i ́ \alpha ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon 1 \alpha$ v $\alpha \mu \varepsilon \lambda \varepsilon \tau \eta \theta \varepsilon i ́ \eta ~ \varepsilon v \tau о \mu о \pi \alpha$ Өоүóvos סрáбך $\tau \omega v \mu \nu \kappa \eta ́ \tau \omega v$ B. bassiana, M. anisopliae кaı I. fumosorosea $\varepsilon \pi i ́ t \omega v$

 $\tau \eta \nu \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta \mu \varepsilon$ тоv $\mu v ́ \kappa \eta \tau \alpha 17$ (Metarhizium anisopliae) va cívaı $\mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \sigma \tau о$

 кодєолтє́pov T. granarium. Ot Rice et al. (1999) $\alpha v \alpha \varphi \varepsilon ́ \rho o v v ~ \theta v \eta \sigma \mu o ́ \tau \eta \tau \alpha ~ \pi \varepsilon \rho i ́ t o v ~$

 $\pi \rho о \vee ง \mu \varphi \omega ́ v \tau \omega v$ вvто́ $\mu \omega v$ T. granarium каı E. kuehniella. Oı $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~$

 $\varepsilon \vee \tau о ́ \mu \omega v \sigma \tau \eta \nu \alpha \pi о$ Ө́́кๆ.

3. ВІВАІОГРАФІА

3.1 Eevó $\lambda \lambda \omega \sigma \boldsymbol{\eta}$

Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.

Abdel Rahman Khaled M., Barta M.., Cagan L.., 2010. Effect of combining Beauveria bassiana and Nosema pyrausta on the mortality of Ostrinia nubilalis, Cent. Eur. J. Biol. 5: 472-480.

Altre, J. A., к αl Vandenberg, J. D., 2001. Factors Influencing the Infectivity ofIsolates of Paecilomyces fumosoroseus against Diamondback Moth, Plutella xylostella. Journal of Invertebrate Pathology. 78: 31-36.
Athanassiou C.G., Kavallieratos N.G., Dimizas C.B., Vayias B.J., Tsakiri J.B., Mikeli N.H., Meletsis C.M., Tomanovic Z., (2008). Persistence and efficacy of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes) and diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat and maize". Crop Protection 27: 1303-1311.

Avantaggiato, G., Quaranta, F., Desiderio, E., Visconti, A., 2002. Fumonisin contamination of maize hybrids visible damaged by Sesamia. J. Sci. Food Agric. 83, 13-18.

Baldwin R. and Fasoulo T., 2003. Confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae). University of Florida, institute of food and agricultural sciences, department of entomology and nematology. http://creatures.ifas.edu/urban/beetles/red_flour_beetle (html)

Bennett S.M., 2003. Stored products insects, Tribolium confusum (Coleoptera: Tenebrionidae). http://www.ma.utexas.edu

Bischoff, J.F., Rehner, S.A., Humber, R.A., 2009. A multilocus phylogeny of the Metarhizium anisopliae line age. Mycologia 101, 512-530.

Brownbridge, M, (1991) Native Bacillus thuringiensis isolates for the management of lepidopteran cereal pests. Insect Sci. Appl. 12, 57-61

Butron A., MalvarR R.A., Carteam.E., Ordas A. \& Velasco P. 1999: Resistance of maize in breds to pink stem borer. Crop Prot. 39: 102-107.

Butron, A., Sandoya, G., Santiago, R., Orda' s, A., Rial, A., Malvar, R.A., 2006a. Searching for new sources of pink stem borer resistance in maize. Genet. Resour. Crop Evol. 53, 1455-1462.

Costa, S.D., Barbercheck, M.E., Kennedy, G.G., 2001. Mortality of Colorado potato beetle (Leptinotarsa decemlineata) after sublethal stress with the CRYIIIA deltaendotoxin of Bacillus thuringiensis and subsequent exposure to Beauveria bassiana. J. Invertebr. Pathol. 77, 173-179.

Cox, F. E. G., 2001. Concomitant infections, parasites and immune responses. Parasitology. 122: 23-38.

Day E., 1996. Confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae).Virginia polytechnic institute and state university, insect identification laboratory http://ext.vt.edu/departments/entomology/factsheets/confused.html

Dimas I., Pitta E. and Angelopoulos K., 2007. Corn Stalk Borer (Sesamia nonagrioides) Infestation on Sorghum in Central Greece. Phytoparasitica 35(2): 191-193.

Driver, F., Milner, R.J., Trueman, W.H.A., 2000 A Taxonomic revision of Metarhizium based on sequence analysis of ribosomal DNA. Mycological Res.104: 135-151

Fargues, J., Delmas, J. C. кגı Lebrun, R. A., 1997. Leaf consumption by larvae of the Colorado potato beetle (Coleoptera: Chrysomelidae) infected with the entomopathogen, Beauveria bassiana. Journal of Economic Ent. 87: 67-71.

Ford J., 1937. Research on populations of Tribolium confusum and bearing on ecological theory (special review). The Journal of Animal Ecology 6, 1937, 114.http: //links.j stor.org/sici

Furlong MJ, Groden EJ, 2001 Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid and cyromazine. Econ. Entomol, 94(2): 344-356.

Gillespie, A. T., Bailey A. M., Cobb B., Vilcinskas A. 2000. Fungi as elicitors ofinsect immune responses. Arch Insect Biochem Physiol. 44: 49-68.

Hajek, A. E., 1989. Food consumption by Lymantria dispar (Lepidoptera: Lymantriidae) larvae infected with Entomophaga maimaiga (Zygomycetes: Entomophthorales). Environmental Entom. 18: 723-727.

Hajek, A. E., McManus, M. L., Delalibera Jr. I., 2007. A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol. Con. 41: 1-13.

Hassanloui, R.T., Pakdel, A.K., Goettel, M. and Mozaffari, J., (2006). Variation in virulence of Beauveria bassiana isolates and its relatedness to some morphological characteristics. Biocontrol Science \& Technology, 16(5/6). p.p. 525-534.

Hilder, V.A., Boulter, D., 1999. Genetic engineering of crop plants for insect resistance-a critical review. Crop Prot. 18, 177-191.

Howe R.W., 1960. The effects of temperature and humidity on the rate of development and the mortality of Tribolium confusum Duval. (Coleoptera: Tenebrionidae). Ann. appl. Biol.,48 (1960), 363-376.
Jacques R.P., Morris O.N., 1981.Compatibility of pathogens with other methods of pest control and with different crops, In: Burges H.D., Hussey N.W., (Eds.), Microbial Control of Insect and Mites, Academic Press, New York,.

Jegorov, A., Sedmera, P., Matha, V., Simek, P., Zahradnickova, Landa, Z., Eyal, J., 1994. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry. 37: 1301-1303.
Kryukov V. Yu., Khodyrev V. P., Yaroslavtseva O. N., Kamenova A. S., Duisembekov B. A., and Glupov V. V., 2009. Synergistic Action of Entomopathogenic Hyphomycetes and the Bacteria Bacillus thuringiensis ssp. morrisoni in the Infection of Colorado Potato Beetle Leptinotarsa decemlineata. Applied Biochemistry and Microbiology, Vol. 45, No. 5, pp. 511-516.

Lacey, L.A. and Brooks, W.A. 1997. Biological techniques series - Manual of techniques in insect pathology. Academic press, London.
Lefebvre, A. 1827. Description de divers insects in edits. Ann. Soc. Linn. Paris 6, 98.
Leger, R. J., 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl. Acad. Sci. U.S.A. 103:6647-6652.

Lewis, L.C., Berry, E.C., Obrycki, J.J., Bing, L.A., 1996. Aptness of insecticides (Bacillus thuringiensis and carbofuran) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agriculture Ecosystems \& Environment 57, 27-34.

Lewis, L.C., Bing, L.A., 1991. Bacillus thuringiensis Berliner and Beauveria bassiana (Balsamo) Vuillemin for European corn borer control: program for immediate and season long suppression. Canadian Entomologist 123, 387393.

Lopez C., Elizaguirre M. \& Albajes R. 2003: Courtship and mating behaviour of the Mediterranean corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Spanish J. Agr. Res. 1: 43-51

Malvar, R.A., Buto n, A., Ordas, B., Santiago, R., 2008. Causes of natural resistance to stem borers in maize. In: Burton, E.N., Williams, P.V. (Eds.), Crop Protection Research Advances. Nova Science Publishers, Inc., pp. 57-100.

McCoy, C. W., Samson, R. A., Boucias, D. G., 1988. Entomogenous fungi. In: Ignoffo CM (ed) CRC Handbook of Natural Pesticides vol V. Microbial insecticides, part A. Entomogenous protozoa and fungi. CRC Press, Bocaaton, FL, pp 151-236

Mietkiewski, R., Gorski, R., 1995. Growth of selected entomopathogenic fungi species and isolates on media containing insecticides. Acta Mycol. 30, 27-33.
Moore, D., Prior, C., 1996. Mycoinsecticides. In: Upadhyay, R.K., Mukerjee, K.G., Rajak, R.L. (Eds.), IPM system in Agriculture, Vol. II. Biocontrol in Emerging Biotechnology. Aditya Books Private Ltd, N. Delhi, pp. 25-56.

Pevling, R., Weyrich, J., 1992. Effects of neem oil, B. bassiana and Dieldrin on non target tenebrionid beetle in desert zone of the Republic of Niger. Biological control of Locusts and Gras hoppers: Proceedings of the Workshop held at International Institute of Tropical Agriculture: Cotonou, Republic of Nenin, April-May 1991, Wallingford, UK, CABI, pp. 321-336.
Quesada-Moraga, Enrique,. Navas - Cortez, Juan A, Maranhao, Elizabeth A. A., Ortiz - urquiza, Almudena, Candido Santiago Alvarez., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research III 947-966.

Rehner, S. A., \& Buckley, E. (2005). "A Beauveria phylogeny inferred from nuclear ITS and EF1-\{alpha\} sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs". Mycologia 97: Pages 84-98.

Riba G., Marcandier S., Richard G., Larget I., 1983. Sensibilitéde la pyrale du maïs (Ostrinia nubilalis) (Lep.: Pyralidae) aux hypomycétes entomopathogènes, Entomophaga,, 28, 55-64.

Robertson J. L., Preisler H.K., Russel M.R., Savin N.E., 2007. Pesticide bioassayswith arthropods, second edition, CRC, Boca Raton pp 196.

Sandner, H., Cichy, D., 1967. Research on the eVectiveness of fungal and bacterial insecticides. Ekol. Pol. Ser. A 15, 325-333.

SAS Institute Inc. 2011. SAS OnlineDoc®. Version 18. SAS Institute Inc., Cary, North Carolina.

Shahid, A. A., Rao, Q. A., Baskhsh, A. к $\alpha \downarrow$ Husnain, T., 2012. Entomopathogenicfungi as biological controllers: new insights into their virulence andpathogenicity. Arch. Biol. Sci. 64(1): 21-42.

Shahid, A. A., Rao, Q. A., Baskhsh, A. к $\alpha \downarrow$ Husnain, T., 2012. Entomopathogenicfungi as biological controllers: new insights into their virulence andpathogenicity. Arch. Biol. Sci. 64(1): 21-42.
Sierotzki, H., Camastral, F., Shah, P. A., Aebi, M., Tuor, U., 2000. Biologicalcharacteristics of selected Erynia neoaphidis isolates. Mycol Res. 104: 213-219.

Sobek, E.A., Munkvold, G.P., 1999. European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptom less infection of maize kernels. J. Econ. Entomol. 92, 503-509.

Thomas, M.B., Watson, E.L., Valverde-Garcia, P., 2003. Mixed infections and insect pathogen interactions. Ecol. Lett. 6, 183-188.

Van Rensburg JBJ, Van Den Berg J, 1992. Infestation patterns of stalk borers Busseola fusca Fuller (Lep.: Noctuidae) and Chilo partellus Swinhoe (Lep.: Pyralidae) in sorghum. J Entomol Soc South Afr 55:197-212

Velasco, P., Revilla, P., Butro' n, B., Orda' s, B., Orda' s, A., Malvar, R.A., 2002. Ear damage of sweet corn inbreds and their hybrids under multiple corn borer infestation. Crop Sci. 42, 724-729.

Wraight, S. P., Butt, T. M., Galaini-Wraight, S., Allee, L. L., Soper, R. S., Roberts, D.W., 1990. Germination and infection processes of entomophothoralean fungus Erynia radicans on the potato leafhopper Emproasca fabae. J. Ivert. Pathol. 56:157-174.

Wraight, S. P., Ramos, M. E, 2005. Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis - based biopesticides applied against field populations of Colorado potato beetle larvae. J. Invertebr. Pathol. 90: 139-150.

Xiao－Mu Maa，，Xiao－Xia Liu，Xia Ning，Bo Zhang，Fei Han，Xiu－Min Guan，Yun－ Feng Tan Qing－Wen Zhang，2009．Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer（Lepidoptera： Crambidae）．Journal of Invertebrate Pathology 99：123－128
Xiong，Qi．，Xie，Yingping．，Zhua，Yougmin．，Xuea，Jiaoliang．，Lib，Jie．，Fanb， Renjun．，2012．Morphological and ultrastructural characterization of Carposinasasakii larvae（Lepidoptera：Carposinidae）infected by Beauveria bassiana（Ascomycota：Hypocreales：Clavicipitaceae）．Micron．44：303－311

Zimmermann，G．，1986．The Galleria bait method for detection of entomopathogenic fungi in soil．J．Appl．Ent．102：213－215．
Zimmermann，G．，1993．The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent．Pestic．Sci．37，375－379．

3．2 Еג入ךレレкท́

 Еvтоиодоүıко́ $\Sigma v v \varepsilon ́ \delta \rho ı, ~ Х \alpha \lambda к i ́ \delta \alpha ~ 2-5 ~ N o є \mu ß р i ́ o v ~ 1999, ~ \sigma \varepsilon \lambda . ~ 215 ~$

 Bioдoүías
 $\varepsilon \delta \alpha ́ \varphi \eta ~ \tau \eta \varsigma$ Е $\lambda \lambda \alpha ́ \delta \alpha \varsigma . \Delta \iota \alpha \tau \mu \eta \mu \alpha \tau \iota \kappa o ́ ~ М \varepsilon \tau \alpha \pi \tau v \chi ı \alpha к o ́ ~ П \rho o ́ \gamma \rho \alpha \mu \mu \alpha ~ \Sigma \pi о v \delta \omega ́ v, ~$ Паveлıбтŋ́ μ ı I $\omega \alpha v v i ́ v \omega v$－TEI H $\pi \varepsilon i ́ \rho o v . ~$

 $\Sigma \pi о v \delta \omega ́ v, ~ П \alpha v \varepsilon \pi \iota \sigma \tau \grave{\mu} \mu \mathrm{o}$ Патрஸ́v．

 Г.П.А., АӨŋ́va: 1-6.
 Mediterráneo, Universidad Politécnica de Valencia, Гє由 $\rho \gamma i ́ \alpha$ - K η voт $\rho о \varphi i ́ \alpha$, тعúzos 7/2009.

 $\sigma \varepsilon \lambda .254 .4$

[^0]:

