

πανεπιστημιό πελοποννήσου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΑΝΤΟΧΗΣ ΜΕ ΤΗ ΜΕΘΟΔΟ PUSHOVER ΒΙΟΜΗΧΑΝΙΚΟΥ ΚΤΙΡΙΟΥ ΑΠΟ ΧΑΛΥΒΑ

ΠΑΠΟΥΤΣΗ ΑΝΝΑ-ΜΑΡΙΑ Α.Μ. 7510 ΣΙΔΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ Α.Μ.7527

ΕΠΙΒΛΕΠΟΝΤΕΣ ΚΑΘΗΓΗΤΕΣ: ΚΑΛΑΠΟΔΗΣ ΝΙΚΟΛΑΟΣ ΣΤΑΘΑΣ ΝΙΚΟΛΑΟΣ

ПАТРА 2024

ΠΕΡΙΛΗΨΗ

Αντικείμενο μελέτης της παρούσας πτυχιακής είναι ο σεισμικός σχεδιασμός και η αποτίμηση της αντοχής μονώροφου βιομηχανικού κτιρίου από χάλυβα, συγκεκριμένα ενός ελαιοτριβείου, με εφαρμογή των Ευρωκωδίκων 0,1,3 και 8. Αρχικά, γίνεται μια αναφορά στις μεταλλικές κατασκευές από χάλυβα κ έπειτα περιγράφεται το υπό μελέτη κτίριο. Αναλύονται οι δράσεις επί της κατασκευής και περιγράφεται η διαδικασία ανάλυσης και διαστασιολόγησης, η οποία έγινε με τη χρήση του προγράμματος SAP2000. Στη συνέχεια, με τη χρήση του προγράμματος SAP2000. Στη συνέχεια, με τη χρήση του προγράμματος παρουσιάζεται η ανάλυση Pushover με τη μέθοδο των μετατοπίσεων και στις δύο κατευθύνσεις x και y καταλήγοντας έτσι στην καμπύλη αντίστασης του μονώροφου φορέα.

ABSTRACT

The subject of this thesis is the seismic design, the assessment of endurance and the feasibility study of a single-storey industrial steel building, specifically an oil press building, in accordance with Eurocodes 0,1,3 and 8. After a brief report about steel constructions this thesis continues with a description of the reference building. Furthermore, the load case analysis is also presented along with the dimensioning process using the software "SAP2000", in addition to the software "Robot Structural Analysis" by Autodesk that was used for the dimensioning of the connections. Finally, Pushover analysis has been performed.

ΕΥΧΑΡΙΣΤΙΕΣ

Θα θέλαμε να ευχαριστήσουμε ιδιαιτέρως τον Δρ. Νικόλαο Σταθά, έκτακτο Διδάσκοντα στη βαθμίδα του Επίκ. Καθηγητή του Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Πελοποννήσου καθώς και τον Δρ. Νικόλαο Καλαπόδη, πρώην έκτακτο Διδάσκοντα στη βαθμίδα του Επίκ. Καθηγητή του Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Πελοποννήσου για την επίβλεψη, την καθοδήγηση καθώς και τη συνεχή υποστήριξή τους καθ' όλη τη διάρκεια εκπόνησης της πτυχιακής μας εργασίας.

Τέλος, θα θέλαμε να πούμε ένα μεγάλο ευχαριστώ στις οικογένειες μας για τη στήριξη καθ' όλη τη διάρκεια των σπουδών μας.

ΠΕΡΙΕΧΟΜΕΝΑ

ПЕРІЛНΨН	i
ΕΥΧΑΡΙΣΤΙΕΣίἰ	i
ΠΕΡΙΕΧΟΜΕΝΑiv	V
ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝν	i
ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝν	i
ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝνί	i
ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ - ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ	1
1.1 ΕΙΣΑΓΩΓΗ	1
1.2 Ο ΧΑΛΥΒΑΣ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ	2
ΚΕΦΑΛΑΙΟ 2: ΠΕΡΙΓΡΑΦΗ – ΠΑΡΟΥΣΙΑΣΗ ΚΤΙΡΙΟΥ ΜΕΛΕΤΗΣ	4
2.1 ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΚΤΙΡΙΟΥ	4
2.2 ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ	5
2.3 ΥΛΙΚΟ ΚΑΤΑΣΚΕΥΗΣ	7
ΚΕΦΑΛΑΙΟ 3: ΦΟΡΤΙΑ ΚΑΤΑΣΚΕΥΗΣ	9
3.1 ГЕNIKA	9
3.2 MONIMA ΦΟΡΤΙΑ	9
3.3 KINHTA ФОРТІА	9
3.4 ФОРТІО XIONIOY 10	0
3.5 ΣΕΙΣΜΙΚΗ ΔΡΑΣΗ13	3
KΕΦΑΛΑΙΟ 4: ΣΥΝΔΥΑΣΜΟΙ ΔΡΑΣΕΩΝ18	8
4.1 ГЕNIKA18	8
4.2 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΑΣΤΟΧΙΑΣ18	8
4.3 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ)
ΚΕΦΑΛΑΙΟ 5: ΘΕΜΕΛΙΩΔΕΙΣ ΕΝΝΟΙΕΣ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ22	2

5.1 ΙΚΑΝΟΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ	22
5.2 ΠΛΑΣΤΙΚΕΣ ΑΡΘΡΩΣΕΙΣ	23
5.3 ΣΥΝΤΕΛΕΣΤΕΣ ΣΥΜΠΕΡΙΦΟΡΑΣ q	25
5.4 ΣΤΑΘΜΕΣ ΕΠΙΤΕΛΕΣΤΙΚΟΤΗΤΑΣ	28
5.5 ΚΑΜΠΥΛΗ ΙΚΑΝΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΗΣ (CAPACITY CURVE)	29
ΚΕΦΑΛΑΙΟ 6: ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΥΠΟ ΜΕΛΕΤΗ ΚΤΙΡΙΟΥ	33
6.1 ΠΑΡΟΥΣΙΑΣΗ ΠΡΟΓΡΑΜΜΑΤΟΣ	33
6.2 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ	33
ΚΕΦΑΛΑΙΟ 7: ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΝΔΕΣΕΩΝ ΥΠΟ ΜΕΛΕΤΗ ΚΤΙΡΙΟΥ	43
7.1 ΣΥΝΔΕΣΗ ΖΥΓΩΜΑΤΩΝ	43
7.2 ΣΥΝΔΕΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ – ΖΥΓΩΜΑΤΟΣ	49
7.3 ΣΥΝΔΕΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ – ΜΗΚΙΔΑΣ	57
7.4 ΕΔΡΑΣΗ ΜΕΤΑΛΛΙΚΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ	60
ΚΕΦΑΛΑΙΟ 8: ΑΠΟΤΙΜΗΣΗ ΑΝΤΟΧΗΣ ΜΕ ΤΗ ΜΕΘΟΔΟ PUSHOVER	69
8.1 ГЕNIKA	69
8.2 ΑΝΑΛΥΣΗ	70
ΚΕΦΑΛΑΙΟ 9: ΣΥΜΠΕΡΑΣΜΑΤΑ	82
ΒΙΒΛΙΟΓΡΑΦΙΑ	84

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

ΙΙΝΑΚΑΣ 2.1 ΟΝΟΜΑΣΤΙΚΕΣ ΤΙΜΕΣ ΤΗΣ ΑΝΤΟΧΗΣ ΔΙΑΡΡΟΗΣ FY ΚΑΙ ΤΗΣ ΟΡΙΑΚΗΣ ΕΦΕΛΚΥΣΤΙΚΗΣ ΑΝΤΟΧΗΣ FU ΓΙΑ ΕΝ ΘΕΡΜΩ ΕΛΑΤΟΥΣ
ХАЛҮВА ^[24]
Ιινακάς 3.1 Κατηγορίες φορτιζομένων επιφανείων ^[14]
ΙΙΝΑΚΑΣ 3.2 Ε ΠΙΒΑΛΛΟΜΕΝΑ ΦΟΡΤΙΑ ΓΙΑ ΣΤΕΓΕΣ ΚΑΤΗΓΟΡΙΑΣ Η ^[5] 1 (
ΙΙΝΑΚΑΣ 3.3 Σ ΥΝΤΕΛΕΣΤΗΣ Μ ^[23]
Ιινακάς 3.4 Σ υνιστωμένες τίμες του Ce για διαφορά τοπογραφικά χαρακτηριστικά ^[23]
Ιίνακας 3.5 Χαρακτηριστικό φορτίο χιόνιου στο έδαφος, s _k , σύναρτήση του υψομέτρου για τις τρείς ζώνες της Ελλάδος ^[21]
1
ΙΙΝΑΚΑΣ 3.6 Χ ΑΡΤΗΣ ΣΕΙΣΜΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ^[12]
Ιινακάς 3.7 Κατηγορίες σπουδαιότητας κτιρίων και σύντελεστής σπουδαιότητας γ ₁ ^[11]
Ιινακάς 3.8 Κατηγορίες εδαφούς ^[11]
ΙΙΝΑΚΑΣ 4.1 ΣΥΝΤΕΛΕΣΤΕΣ ΣΥΝΔΥΑΣΜΟΥ ΔΡΑΣΕΩΝ Ψ ^[13]
ΙΙΝΑΚΑΣ 5.1 ΜΕΓΙΣΤΕΣ ΤΙΜΕΣ ΣΥΝΤΕΛΕΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ Q ^[13]
ΙΙΝΑΚΑΣ 5.2 ΣΤΑΘΜΕΣ ΕΠΙΤΕΛΕΣΤΙΚΟΤΗΤΑΣ ^[17]
ΙΙΝΑΚΑΣ 6.1 ΤΕΛΙΚΕΣ ΔΙΑΤΟΜΕΣ

<u>ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ</u>

Σχήμα 2.1 Τρισδιάστατη απεικονισή του ύπο μελετή φορέα
Σχήμα 2.2 Όψη του ύπο μελετή φορέα
Σχήμα 2.3 Κατοψή του ύπο μελετή φορέα
Σχήμα 2.4 Απεικονισή μελών κατάσκευης
Σχήμα 5.1 Συμπεριφορά κατάσκευων σύμφωνα με το σχεδιάσμο και πραγματική ανελαστική σύμπεριφορά [4]
Σχήμα 5.2 Κατάσκευή της καμπύλης ικανότητας πολυωροφού κτιρίου ^[18]
Σχήμα 5.3 Σύγκριση σημείου επιτελεστικότητας για το σεισμό σχεδιάσμου και αντιστοιχής σταθμής επιτελεστικότητας ^[18] 31
$\label{eq:schwab} \Sigma XHMA 5.4 Προσδιορισμός the stokeyomenhe metakinhehe toy isodynamoy mono βαθμιου σύστηματος $^{[18]}$32$$
Σχήμα 8.1 Θέσεις πλαστικών αρθρώσεων
Σχήμα 8.2 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 7 για τον αξόνα Υ 77
Σχήμα 8.3 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 8 για τον αξόνα Υ 77
Σχήμα 8.4 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 10 για τον αξόνα Υ . 78
Σχήμα 8.5 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 12 για τον αξόνα Υ . 78
Σχήμα 8.6 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 4 για τον αξόνα Χ 79
Σχήμα 8.7 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 11 για τον αξόνα Χ.79
Σχήμα 8.8 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 12 για τον άξονα Χ.80
Σχήμα 8.9 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτύχθει στο βήμα 15 για τον άξονα Χ. 80
Σχήμα 8.10 Εμφανίση καμπύλης ικανότητας φορέα για τον αξόνα Υ

Σχήμα 8.11 Εμφανισή καμπύλης ικανότητας φορέα για τον αξόνα Χ	. 81
---	------

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικονά 1.1 Φορέας από χαλύβα	1
Είκονα 5.1 (α) Ανεπιθύμητη μορφή αστοχίας (β) Επιθύμητη κατανομή πλαστικών αρθρώσεων ^[4]	23
ΕΙΚΟΝΑ 6.1 ΕΙΣΑΓΩΓΗ ΝΕΟΥ ΜΟΝΤΕΛΟΥ	34
Εικονά 6.2 Σύντεταγμενές κανναβού	34
Εικόνα 6.3 Καθορισμός χαρακτηριστικών του δομικού χαλύβα	35
Εικόνα 6.4 Εισαγωγή διατομών	35
ΕΙΚΟΝΑ 6.5 ΛΙΣΤΑ ΑΥΤΟΜΑΤΗΣ ΕΠΙΛΟΓΗΣ ΔΙΑΤΟΜΩΝ ΥΠΟΣΤΥΚΩΜΑΤΩΝ ΚΑΤΑ ΤΟ ΣΧΕΔΙΑΣΜΟ	36
ΕΙΚΟΝΑ 6.6 ΛΙΣΤΑ ΑΥΤΟΜΑΤΗΣ ΕΠΙΛΟΓΗΣ ΔΙΑΤΟΜΩΝ ΓΙΑ ΤΟΥΣ ΑΜΕΙΒΟΝΤΕΣ ΚΑΤΑ ΤΟ ΣΧΕΔΙΑΣΜΟ	36
ΕΙΚΟΝΑ 6.7 ΛΙΣΤΑ ΑΥΤΟΜΑΤΗΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΜΗΚΙΔΕΣ-ΤΕΓΙΔΕΣ-ΟΡΙΖΟΝΤΙΟΙ ΣΥΝΔΕΣΜΟΙ ΔΥΣΚΑΜΨΙΑΣ ΚΑΤΑ ΤΟ	
ΣΧΕΔΙΑΣΜΟ	37
Εικονά 6.8 Σχεδιάση μελούς	37
Εικόνα 6.9 Καθορισμός στηρίξεων	38
Εικόνα 6.10 Απελευθερώση ροπών	38
Εικονα 6.11 Καθορισμός φασματός σχεδιάσμου	39
ΕΙΚΟΝΑ 6.12 ΚΑΘΟΡΙΣΜΟΣ ΤΩΝ LOAD PATTERNS	39
Είκονα 6.13 Σχεδιάσμος φορτίσης SNOW	40
Εικονα 6.14 Σχεδιασμός φορτίσης ΕΠΙΚΑΛΥΨΗΣ	41
Είκονα 6.15 Σχεδιάσμος φορτίσης κινητού φορτίου	41
ΕΙΚΟΝΑ 6.16 ΜΟΡΦΩΣΗ ΤΟΥ ΦΟΡΕΑ ΜΕΤΑ ΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ-ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΠΕΙΚΟΝΙΣΗ	42
Είκονα 7.1 Σύνδεση ζύγωματος	44
Εικόνα 7.2 Σύνδεση υποστυλωματός-ζύγωματος	49
Εικόνα 7.3 Σύνδεση υποστυλωματός-μηκίδας	57
Εικόνα 7.4 Έδραση μεταλλικού υποστυλωματός	60
Είκονα 8.1 Εισαγωγή πλαστικών αρθρώσεων	71
Εικονα 8.2 Πλαστικές αρορώσεις για ζύγωματα και κεφαλοδοκο	72
Είκονα 8.3 Πλαστικές αρορώσεις υποστυλωμάτων	72
Εικονα 8.4 Πλαστικές αρορώσεις για σύνδεσμους δυσκαμψίας	72
Εικόνα 8.5 Ορισμός ανελαστικής στατικής ανάλυσης για τα κατακορύφα φορτία	73
Είκονα 8.6 Καθορισμός της LOAD CASE που περιέχει την Πλευρική Δύναμη για την πραγματοποίηση της Μή Γραμ	ΙΜΙΚΗΣ
Αναλύσης για τον αξόνα Υ	74
ΕΙΚΟΝΑ 8.7 ΠΑΡΑΜΕΤΡΟΙ ΑΝΕΛΑΣΤΙΚΗΣ ΣΤΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΟ PUSHOVER_Υ	74
Είκονα 8.8 Καθορισμός της LOAD CASE που περιέχει την Πλευρική Δύναμη για την πραγματοποιήση της Μή Γραμ	ΙΜΙΚΗΣ
Αναλύσης για τον αξόνα Χ	75
ΕΙΚΟΝΑ 8.9 ΠΑΡΑΜΕΤΡΟΙ ΑΝΕΛΑΣΤΙΚΗΣ ΣΤΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΟ PUSHOVER_X	75

Εικόνα 8.10 Κόμβος παρακολούθησης της αναλύσης	76
Εικονα 8.11 Παραφυρό που εμφανιζεται πριν την εκτελέση της αναλύσης	76

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ - ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

1.1 ΕΙΣΑΓΩΓΗ

Τις τελευταίες δεκαετίες ανεγείρονται όλο και περισσότερες χαλύβδινες κατασκευές, κυρίως βιομηχανικές εγκαταστάσεις, στέγαστρα και αποθήκες. Η προετοιμασία των ολυμπιακών αγώνων της Αθήνας το 2004 είχε καθοριστική επίδραση στην ανάπτυξη μεταλλικών κτιρίων, καθώς χωρίς τη χρήση χάλυβα δε θα ήταν εφικτή η ολοκλήρωση τους εγκαίρως.

Αντικείμενο της παρούσας πτυχιακής εργασίας είναι η μελέτη (ανάλυση και διαστασιολόγηση) ενός μονώροφου μεταλλικού κτιρίου βιομηχανικής χρήσης. Η προσομοίωση και η ανάλυση του κτιρίου έγινε με τη χρήση του προγράμματος στατικών και δυναμικών αναλύσεων ηλεκτρονικού υπολογιστή SAP2000 και βασίστηκε στους Ευρωκώδικες:

ΕΝ 1990 Ευρωκώδικας 0 : Βασικές αρχές σχεδιασμού

ΕΝ 1991 Ευρωκώδικας 1: Δράσεις στις κατασκευές

ΕΝ 1993 Ευρωκώδικας 3: Σχεδιασμός κατασκευών από χάλυβα

ΕΝ 1998 Ευρωκώδικας 8: Σχεδιασμός αντισεισμικών κατασκευών

Οι κανονισμοί για τους Ευρωκώδικες αναγνωρίζουν την ευθύνη που έχουν οι ελεγκτικοί μηχανισμοί σε κάθε Κράτος Μέλος και έχουν διασφαλίσει το δικαίωμά του να καθορίζουν τιμές σχετικές με ρυθμιστικά θέματα ασφαλείας σε εθνικό επίπεδο όπου αυτές συνεχίζουν να διαφέρουν από Κράτος σε Κράτος.

Εικόνα 1.1 Φορέας από χάλυβα.

1.2 Ο ΧΑΛΥΒΑΣ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

Ο δομικός χάλυβας είναι το βασικό υλικό από το οποίο συντίθεται ο φέρων οργανισμός των χαλύβδινων κτιριακών και λοιπών έργων. Είναι κράμα με βασικό συστατικό το σίδηρο (Fe) και διάφορα άλλα μεταλλικά και μη στοιχεία σε μικρή αναλογία, όπως Άνθρακας (C), Μαγγάνιο (Mn), Πυρίτιο (Si), Νικέλιο (Ni), Χαλκός (Cu), Χρώμιο (Cr), Μολυβδαίνιο (Mo), Βανάδιο (V), Ζιρκόνιο (Zr), Θείο (S), Φώσφορος (P), ορισμένα εκ των οποίων είναι ανεπιθύμητα, επειδή επηρεάζουν δυσμενώς κάποια χαρακτηριστικά του χάλυβα.

Η ποσοστιαία συμμετοχή των στοιχείων αυτών προσδιορίζει τις χαρακτηριστικές ιδιότητες του χάλυβα (αντοχή, συγκολλησιμότητα, ευαισθησία στη διάβρωση, ολκιμότητα), μικρή δε μεταβολή της αναλογίας αυτής οδηγεί στη δημιουργία άλλου είδους χάλυβα. Έτσι, αναφορικά με την περιεκτικότητα σε άνθρακα, που είναι από τα κυριότερα συστατικά του χάλυβα, αυτή ποικίλει από 0,15% έως 1,70%, οι συνήθεις δε δομικοί χάλυβες έχουν περιεκτικότητα σε άνθρακα.

Οι κυριότερες φυσικές ιδιότητες του δομικού χάλυβα, με μεγάλη σημασία για τις μεταλλικές κατασκευές, είναι:

- Ο υψηλός συντελεστής θερμικής διαστολής
- Η μεγάλη θερμική αγωγιμότητα
- Η ελατότητα (δηλαδή η δυνατότητα μορφοποίησης του σε επίπεδα ελάσματα)
- Η ολκιμότητα (δηλαδή η δυνατότητα μορφοποίησης του σε σύρματα).

Οι δύο πρώτες φυσικές ιδιότητες χαρακτηρίζουν και την ευαισθησία του υλικού στις θερμοκρασιακές μεταβολές και τη φωτιά.

Οι κυριότερες μηχανικές ιδιότητες του δομικού χάλυβα, καθοριστικές για τη χρήση του στη δόμηση, είναι:

 Η μεγάλη αντοχή στα διάφορα είδη καταπονήσεων (θλίψη, κάμψη, εφελκυσμός). Χρησιμοποιούνται λεπτές διατομές με μικρό ίδιο βάρος και επιτυγχάνεται οικονομία υλικού και χώρου.

Το μεγάλο μέτρο ελαστικότητας (Ε=2.1×10^5 MPa)

Σε αυτές οφείλονται οι τόσο υψηλές αντοχές του υλικού, με ανάπτυξη μικρών παραμορφώσεων.

Κάποια από τα πλεονεκτήματα που προσφέρει ο χάλυβας ως κύριο δομικό υλικό σε ένα κτίριο το οποίο προορίζεται ειδικά για βιομηχανική χρήση είναι τα εξής:

 Το σχετικά μικρό ίδιο βάρος τους το οποίο συνεπάγεται ευχερέστερη θεμελίωση ιδίως σε κακής ποιότητας εδάφη και σεισμικές δυνάμεις,

2. Η ταχύτητα κατασκευής.

3. Το υψηλό ποσοστό βιομηχανικής προκατασκευής του.

4. Η επισκευασιμότητά του καθώς και η δυνατότητα τροποποίησης και ενίσχυσης υπάρχουσας κατασκευής.

5. Δυνατότητα κατασκευής μεγάλων ανοιγμάτων

6. Αντισεισμική προστασία κυρίως χάρη στη μεγάλη ολκιμότητα του χάλυβα

7. Φιλικά προς το Περιβάλλον. Ο χάλυβας είναι 100% ανακυκλώσιμος. Τα προγράμματα ανακύκλωσης του χάλυβα διαφυλάσσουν τους φυσικούς πόρους και ελαττώνουν σημαντικά την παραγωγή αποβλήτων. Επίσης, μεγάλο μέρος των κατασκευών, γίνονται σε κλειστό χώρο. Αυτό συνεπάγεται μείωση της ρύπανσης προς το περιβάλλον, μείωση ή ελαχιστοποίηση της ηχορύπανσης

Έναντι των ανωτέρω, υπάρχουν και ορισμένα μειονεκτήματα τα οποία συνοψίζονται παρακάτω:

- 1. Η ευαισθησία στη διάβρωση και την πυρκαγιά,
- 2. Η απαίτηση εξειδικευμένου εργατοτεχνικού προσωπικού.
- 3. Ειδικός υπολογισμός συνδέσεων.

ΚΕΦΑΛΑΙΟ 2: ΠΕΡΙΓΡΑΦΗ – ΠΑΡΟΥΣΙΑΣΗ ΚΤΙΡΙΟΥ ΜΕΛΕΤΗΣ

2.1 ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΚΤΙΡΙΟΥ

Η παρούσα πτυχιακή εργασία έχει ως αντικείμενο τη διαστασιολόγηση και τη στατική μελέτη ενός μονώροφου ελαιοτριβείου μεταλλικής κατασκευής που πρόκειται να κατασκευαστεί στην περιοχή της Καλαμάτας. Πιο συγκεκριμένα, το ελαιοτριβείο έχει ορθογωνική κάτοψη διαστάσεων (15x30)m και αποτελείται από 6 κύριους φορείς - πλαίσια ανά 6m. Το μέγιστο ύψος του κτιρίου είναι 6,28m και η στέγη είναι δίρριχτη με κλίση 6^o.

Σχήμα 2.1 Τρισδιάστατη απεικόνιση του υπό μελέτη φορέα.

Σχήμα 2.2 Όψη του υπό μελέτη φορέα.

2.2 ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ

i. <u>Κύριοι φορείς:</u>

Οι **κύριοι φορείς** είναι συνήθως πλαίσια, που διατάσσονται κατά κανόνα ανά ίσες μεταξύ τους αποστάσεις και έχουν τη δυνατότητα παραλαβής κατακόρυφων και οριζόντιων φορτίων (ανέμου, σεισμού). Οι κόμβοι των πλαισίων αυτών πρέπει να έχουν τη δυνατότητα παραλαβής ροπών.

Όπως προαναφέρθηκε, το συγκεκριμένο κτίριο αποτελείται από 6 πλαίσια ανά 6m, τα οποία αποτελούνται από υποστυλώματα και ζύγωμα με κλίση 6°. Επιλέχθηκαν διατομές HEB για υποστυλώματα και IPE για αμείβοντες . Από ανάλυση προέκυψαν οι βέλτιστες διατομές **HEB360** και διατομές **IPE270**.

ii. <u>Τεγίδες:</u>

Οι τεγίδες είναι δοκοί που γεφυρώνουν τις αποστάσεις μεταξύ των κύριων φορέων και μεταφέρουν σε αυτούς τα φορτία τα οποία ασκούνται στην επιστέγαση, όπως τα βάρος των φύλλων επικάλυψης, το φορτίο χιονιού, η ανεμοπίεση και τυχόν ωφέλιμο φορτίο. Σε ορισμένες περιπτώσεις είναι δυνατόν από τις τεγίδες να αναρτώνται στοιχεία του μηχανολογικού εξοπλισμού του κτιρίου ή ο σκελετός ψευδοροφής. Οι τεγίδες διατάσσονται, κατά κανόνα, ανά ίσες μεταξύ τους αποστάσεις. Οι τεγίδες του κτιρίου είναι διατεταγμένες ανά 1.88m και οι διατομές που επιλέχθηκαν είναι **ΙΡΕ140**.

iii. <u>Μηκίδες:</u>

Οι μηκίδες είναι οριζόντιες δοκοί που τοποθετούνται, ανά αποστάσεις, σε όλες τις όψεις του κτιρίου, γεφυρώνουν τις αποστάσεις μεταξύ των υποστυλωμάτων και δέχονται τα φύλλα πλευρικής επένδυσης της κατασκευής. Κύρια φόρτιση για τις μηκίδες είναι η ανεμοπίεση. Οι μηκίδες του κτιρίου είναι διατεταγμένες ανά 1.83m και οι διατομές που επιλέχθηκαν είναι **IPE140**.

iv. <u>Οριζόντιοι σύνδεσμοι δυσκαμψίας:</u>

Οι οριζόντιοι σύνδεσμοι δυσκαμψίας είναι κατά κανόνα δικτυωτοί φορείς που διατάσσονται στο επίπεδο των ζυγωμάτων των πλαισίων και καταλαμβάνουν το εύρος μεταξύ δύο διαδοχικών κύριων φορέων. Το δικτύωμα συγκροτείται από τα ζυγώματα των εκατέρωθεν πλαισίων, ορισμένες τεγίδες και πρόσθετες διαγώνιες ράβδους. Σκοπός των επιμέρους αυτών φορέων είναι η μεταφορά των οριζόντιων δυνάμεων , που ασκούνται στο επίπεδο της επιστέγασης καθέτως προς τα επίπεδα των κυρίων φορέων, στα κατακόρυφα συστήματα δυσκαμψίας. Για τους οριζόντιους συνδέσμους δυσκαμψίας επιλέχθηκαν διατομές IPE140.

v. <u>Κατακόρυφοι σύνδεσμοι δυσκαμψίας:</u>

Οι κατακόρυφοι σύνδεσμοι δυσκαμψίας είναι συνήθως δικτυωτοί σχηματισμοί, διαφόρων μορφών, που τοποθετούνται μεταξύ δύο διαδοχικών υποστυλωμάτων και μεταφέρουν στη θεμελίωση τα οριζόντια φορτία, τα οποία παραλαμβάνουν από τους οριζόντιους συνδέσμους και τις κεφαλοδοκούς. Οι κατακόρυφοι σύνδεσμοι δυσκαμψίας συνίσταται να τοποθετούνται στα ίδια φατνώματα, στα οποία έχουν διαταχθεί και οριζόντιοι σύνδεσμοι. Για τους κατακόρυφους συνδέσμους δυσκαμψίας επιλέχθηκαν διατομές CHS88.9*3.2 (TUBO-D88.9*3.2).

Οι βέλτιστες διατομές που επιλέχθηκαν παραπάνω προέκυψαν ύστερα από ανάλυση και θα αναφερθούμε περεταίρω σε επόμενο κεφάλαιο.

Σχήμα 2.4 Απεικόνιση μελών κατασκευής

2.3 ΥΛΙΚΟ ΚΑΤΑΣΚΕΥΗΣ

Ο χάλυβας που χρησιμοποιήθηκε για όλα τα δομικά στοιχεία της κατασκευής είναι κατηγορίας **S275**.

Οι ονομαστικές τιμές του ορίου διαρροής f_y και θραύσης f_u για εν θερμώ ελατούς χάλυβες δίνονται στα Ευρωπαϊκά Πρότυπα ΕΝ 10025-2 και ΕΝ 1993-1-1 (Πίνακας 2.1).

Ποότυτο	Ονομαστικό πάχος του στοιχείου t [mm]			
και	t ≤ 40 mm		$40 \text{ mm} \le t \le 80 \text{ mm}$	
ποιοτητα χαλυβα	f _y [N/mm ²]	$f_u [N/mm^2]$	f _y [N/mm ²]	$f_u [N/mm^2]$
EN 10025-2				
S 235 S 275 S 355 S 450	235 275 355 440	360 430 510 550	215 255 335 410	360 410 470 550
EN 10025-3				
8 275 N/NL 8 355 N/NL 8 420 N/NL 8 460 N/NL	275 355 420 460	390 490 520 540	255 335 390 430	370 470 520 540
EN 10025-4				
S 275 M/ML S 355 M/ML S 420 M/ML S 460 M/ML	275 355 420 460	370 470 520 540	255 335 390 430	360 450 500 530
EN 10025-5				
\$ 235 W \$ 355 W	235 355	360 510	215 335	340 490
EN 10025-6				
S 460 Q/QL/QL1	460	570	440	550

Πίνακας 2.1 Ονομαστικές τιμές της αντοχής διαρροής f_y και της οριακής εφελκυστικής αντοχής f_u για εν θερμώ ελατούς χάλυβα^[24]

Οι παράμετροι του υλικού που υιοθετούνται στους υπολογισμούς για δομικούς χάλυβες, οι οποίοι δίνονται στην ευρωπαϊκή προδιαγραφή ΕΝ 10025 του Ευρωκώδικα 3, πρέπει να λαμβάνονται ως εξής:

-μέτρο ελαστικότητας: Ε=210000MPa

-μέτρο διάτμησης: G=E/[2(1+v)]=81000MPa

-λόγος Poisson στην ελαστική περιοχή: v=0,3

-συντελεστής γραμμικής θερμικής διαστολής: $a=12 \times 10-6$ (για T < 1000°C)

<u>ΚΕΦΑΛΑΙΟ 3:ΦΟΡΤΙΑ ΚΑΤΑΣΚΕΥΗΣ</u>

3.1 ΓΕΝΙΚΑ

Ο φορέας πρέπει να σχεδιάζεται και να κατασκευάζεται με τέτοιο τρόπο, ώστε με κατάλληλο βαθμό αξιοπιστίας και κατά τρόπο οικονομικό, να αντιμετωπίζει όλες τις δράσεις (φορτία) και τις επιδράσεις από το περιβάλλον, οι οποίες είναι πιθανόν να εμφανιστούν κατά την εκτέλεση και τη διάρκεια ζωής του και να παραμένει κατάλληλος για τη χρήση για την οποία προορίζεται σε όλη τη διάρκεια αυτή.

Ο φορέας πρέπει να σχεδιάζεται έτσι ώστε να είναι επαρκής ως προς την:

- Αντοχή
- λειτουργικότητα και
- ανθεκτικότητα.

Η εκτίμηση των φορτίων και δυνάμεων που ασκούνται σε μία κατασκευή ή μέλος αυτής, δεν είναι πάντοτε δυνατή με ακρίβεια. Ακόμα και αν η φόρτιση είναι γνωστή σε κάποια θέση μίας κατασκευής, η κατανομή αυτής σε διάφορα μέλη της καθορίζεται συνήθως με παραδοχές και προσεγγίσεις. Φορτία και δυνάμεις, που δρουν σε μια κατασκευή, διακρίνονται σε δυο βασικές κατηγορίες: Τα μόνιμα (dead loads) και τα κινητά φορτία ή δυνάμεις (live loads and forces). Φορτία διαφόρων κατηγοριών μπορούν να δρουν συνδυαστικά όπου ο υπολογισμός γίνεται με τη μέθοδο των οριακών καταστάσεων.

3.2 ΜΟΝΙΜΑ ΦΟΡΤΙΑ

Το μόνιμο φορτίο (dead load) είναι ένα σταθερής θέσης φορτίο βαρύτητας, διότι ενεργεί συνεχώς επί μιας κατασκευής εν λειτουργία με κατεύθυνση το κέντρο της γης, δηλαδή είναι στατικό φορτίο. Στο μόνιμο φορτίο περιλαμβάνεται το ίδιο βάρος της κατασκευής και τα συνεχώς επ' αυτής φερόμενα στοιχεία κατά τη διάρκεια ζωής της (π.χ. εξαρτήματα , μονώσεις , επιστρώσεις , τοίχοι κτλ.)

Ως τιμές των μόνιμων δράσεων, οι οποίες και πρόκειται να δράσουν στον φορέα και θα εισαχθούν στο στατικό μας προσομοίωμα θα είναι οι κάτωθι:

Τδιο βάρος χάλυβα: $\gamma_s = 78.50 \text{ kN/m}^3$

Επικαλύψεις: g=0.18 kN/m² (Η τιμή αυτή έχει ληφθεί από κατασκευαστικές προδιαγραφές [28])

3.3 ΚΙΝΗΤΑ ΦΟΡΤΙΑ

Οι μεταβλητές δράσεις θα πρέπει να τοποθετούνται κατά τον πλέον δυσμενή τρόπο (δυσμενείς φορτίσεις). Τα κινητά φορτία αποτελούνται μόνο από τα κατακόρυφα φορτία που δρουν στην στέγη.

Οι στέγες σύμφωνα με τον EN1991-1-1 κατατάσσονται σε τρεις κατηγορίες ανάλογα με την προσβασιμότητά τους , όπως φαίνεται στον πίνακα 3.1

ΚΑΤΗΓΟΡΙΕΣ ΦΟΡΤΙΖΟΜΕΝΩΝ ΕΠΙΦΑΝΕΙΩΝ	ΣΥΓΚΕΚΡΙΜΕΝΗ ΧΡΗΣΗ
Н	Στέγες μη-προσβάσιμες παρά μόνο για την κανονική συντήρηση και για επισκευή.
I	Στέγες προσβάσιμε ς για χρήση σύμφωνα με τις κατηγορίες Α έως D
K	Στέγες προσβάσιμες για ειδικές χρήσεις, όπως ελικοδρόμια.

Η οροφή του μεταλλικού κτιρίου που μελετάμε ανήκει στην κατηγορία Η (στέγες μη προσβάσιμες).

Τα επιβαλλόμενα φορτία για τις στέγες της κατηγορίας Η συνοψίζονται στον πίνακα 3.2.

Στέγη	q _k [kN/m ²]	Q _k [kN]
Κατηγορία Η	0.00-1.00	0.90-1.50

Πίνακας 3.2 Επιβαλλόμενα φορτία για στέγες κατηγορίας Η [5]

Στο στατικό προσομοίωμα επιλέχθηκε ως επιβαλλόμενο φορτίο **q=0.5** kN/m², προτεινόμενη τιμή του Εθνικού Προσαρτήματος, θεωρώντας ότι δρα στους αμείβοντες. Επομένως, το φορτίο Q προκύπτει ίσο με **3** kN/m.

3.4 Φ OPTIO XIONIOY

Τα φορτία λόγω χιονιού αντιμετωπίζονται παραδοσιακά, ορίζοντας μια συγκεκριμένη απλή τιμή φορτίου, με πιθανές μειώσεις για απότομες κλίσεις στεγών. Η προσέγγιση αυτή δε λαμβάνει υπόψη περιπτώσεις όπως αυξανόμενη χιονόπτωση σε μεγαλύτερα υψόμετρα ή τοπικά υψηλότερα φορτία λόγω κίνησης της μάζας του χιονιού, γεγονός που μπορεί να προκαλέσει πλήρη ή μερική κατάρρευση. Μία καλύτερη προσέγγιση είναι η χρησιμοποίηση κατάλληλου χάρτη, που δίνει τις βασικές εντάσεις των φορτίων χιονιού για ένα συγκεκριμένο υψόμετρο και περίοδο αναφοράς, ενώ μπορούν να εφαρμοστούν εν συνεχεία διορθώσεις για διαφορετικά υψόμετρα ή διάρκεια ζωής σχεδιασμού. Το χιόνι χαρακτηρίζεται ως μια στατική δράση, μεταβλητή ως προς το χρόνο αλλά σταθερή ως προς το χώρο. Η ποσότητα του χιονιού που εναποτίθεται σε μια στέγη εξαρτάται από την κλίση της στέγης και την τοποθεσία (υψόμετρο, προσανατολισμός κλπ.) του έργου, ενώ η πυκνότητά του μέσω της οποίας προσδιορίζεται το αντίστοιχο φορτίο λόγω χιονιού δεν είναι σταθερή και εξαρτάται από το βαθμό συμπύκνωσής του στη συγκεκριμένη θέση.

Το φορτίο χιονιού στην στέγη, s, βάσει τον EN1991-1-3, προκύπτει από το χαρακτηριστικό φορτίο χιονιού στο έδαφος, s_k, (σε KPa^[3]) και το οποίο τροποποιείται με μια σειρά συντελεστών οι οποίοι λαμβάνουν υπόψη τους:

- Συντελεστής σχή-Συντελεστής σχήματος φορτίου χιματος φορτίου χιο-Γωνία κλίσης της στέγης ονιού νιού a (°) μ μ_2 0,8 0,8 $0^{\circ} \le \alpha \le 15^{\circ}$ 0.8 $0,8+0,6(\alpha-15)/30$ $15^\circ \le \alpha \le 30^\circ$ 0,8(60-α)/30 $1,1(60-\alpha)/30$ $30^\circ \le \alpha \le 60^\circ$ $\alpha \ge 60^{\circ}$ 0,0 0,0
- τη διαφοροποίηση του φορτίου από το έδαφος στην στέγη (συντελεστής σχήματος, μ),

Πίνακας	3.3	Συντελεστής	μ [23]
---------	-----	-------------	--------

• την έκθεση της στέγης στα καιρικά φαινόμενα (συντελεστής έκθεσης, Ce) και

Συνθήκες έκθεσης της κατασκευής	Ce
Κανονικές συνθήκες	1.00
Ισχυροί άνεμοι	0.80
Προστατευμένες κατασκευές	1.20

Πίνακας 3.4 Συνιστώμενες τιμές του Ce για διάφορα τοπογραφικά χαρακτηριστικά [23]

την επίδραση της θερμοκρασίας στην συσσώρευση του χιονιού στην στέγη (θερμικός συντελεστής, Ct). Ο θερμικός συντελεστής λαμβάνεται γενικώς ίσος με την μονάδα: Ct=1.
 Είναι δηλαδή:

$$s = \mu_i C_e C_t S_k$$

Το χαρακτηριστικό φορτίο χιονιού στο έδαφος, s_k, εξαρτάται από την γεωγραφική θέση και το υψόμετρο της περιοχής σύμφωνα με τον EN1991-1-3.

Οι τρεις ζώνες στις οποίες χωρίζεται η Χώρα είναι οι εξής:

 Ζώνη Α: Νομοί Αρκαδίας, Ηλείας, Λακωνίας, Μεσσηνίας και όλα τα νησιά πλην των Σποράδων και της Εύβοιας

~ Ζώνη Γ: Νομοί Μαγνησίας, Φθιώτιδας, Καρδίτσας, Τρικάλων, Λάρισας, Σποράδες και Εύβοια

~ Ζώνη Β: Υπόλοιπη Χώρα

Επειδή το χαρακτηριστικό φορτίο χιονιού στο έδαφος εξαρτάται, με παραβολικό τρόπο, και από το υψόμετρο της περιοχής, δίνεται η σχέση μεταβολής του χαρακτηριστικού φορτίου συναρτήσει του υψομέτρου.

Η σχέση που προέκυψε για την Ελλάδα είναι:

$$s_k = (0,420 * Z - 0,030) \left[1 + \left(\frac{A}{917} \right)^2 \right]$$

Όπου:

Α: το υψόμετρο της περιοχής σε m, στην προκειμένη περίπτωση Α=21m

Ζ: αριθμός που παίρνει τις τιμές 1, 2 και 4 για τις τρεις ζώνες Α, Β και Γ αντίστοιχα.

Μιας και το ελαιοτριβείο θα χτιστεί στην Καλαμάτα , βρισκόμαστε στη **Ζώνη Α**. Επομένως, έχουμε **Z=1**.

Στο Εθνικό Προσάρτημα η παραπάνω σχέση απλοποιήθηκε ως εξής:

$$s_{k} = s_{k,0} \left[1 + \left(\frac{A}{917}\right)^{2} \right]$$

Όπου:

sk,0 το χαρακτηριστικό φορτίου χιονιού στο έδαφος στην στάθμη της θάλασσας και το οποίο παίρνει τις τιμές 0.4, 0.8 και 1.7kPa για τις τρεις ζώνες Α, Β και Γ αντίστοιχα. Συγκεκριμένα , εμείς έχουμε s_{k,0}=0.4 KN/m²

Υψόμετ	00 A (m)	Ζώνη Α	Ζώνη Β	Ζώνη Γ
από	έως			
0	100	0.40	0.81	1.72
100	200	0.42	0.84	1.78
200	300	0.44	0.89	1.88
300	400	0.48	0.95	2.02
400	500	0.52	1.04	2.21
500	600	0.57	1.14	2.43
600	700	0.63	1.27	2.69
700	800	0.70	1.41	2.99
800	900	0.79	1.57	3.34
900	1000	0.88	1.75	3.72
1000	1100	0.98	1.95	
1100	1200	1.08	2.17	υ
1200	1300	1.20	2.41	τείτ ή
1300	1400	1.33	2.66	παι' ιδικ Άέτ
1400	1500	0.40	0.80	E P
1500	Και άνω	Δεν καλύπτετ	ται από τον Ευρ	ωκώδικα

Πίνακας 3.5 Χαρακτηριστικό φορτίο χιονιού στο έδαφος, sk, συνάρτηση του υψομέτρου για τις τρεις ζώνες της Ελλάδος [21]

Άρα:

$s = \mu_i C_e C_t s_k = 0.8 \times 1 \times 1 \times 0.4 => s = 0.32 \text{ KN/m}^2$

3.5 ΣΕΙΣΜΙΚΗ ΔΡΑΣΗ

Κατά τη διάρκεια ενός σεισμού αναπτύσσονται στο έδαφος επιταχύνσεις (οριζόντιες και κατακόρυφες), που έχουν ως συνέπεια τη δημιουργία αδρανειακών δυνάμεων επί των κατασκευών. Αναλυτικότερα, τα κτίρια αποκρίνονται στις ανακυκλιζόμενες αυτές μετακινήσεις που επιβάλλονται από το έδαφος επιστρατεύοντας την ακαμψία τους και τις αντοχές τους. Επομένως, είναι πολύ σημαντικό να ξεκαθαριστεί ότι ο σεισμός δεν επιβάλει δυνάμεις πάνω στην κατασκευή αλλά μετακινήσεις εναλλασσόμενου πρόσημου. Οι δυνάμεις που τελικά αναπτύσσονται είναι εσωτερικές αντιδράσεις στις αδρανειακές δυνάμεις που αναπτύσσονται ότο έξωτερικά επιβαλλόμενων παραμορφώσεων. Αναφερόμενοι στις αναπτύσσονται λόγω των εξωτερικά επιβαλλόμενων παραμορφώσεων. Αναφερόμενοι στις αναπτύσσονται λόγω την αρχική κατάσταση της κατασκευής έναντι της εναλλασσόμενης κίνησης εδάφους στο οποίο αυτή εδράζεται. Από τις δυνάμεις αυτές, οι οριζόντιες θεωρούνται οι πλέον σοβαρές, χωρίς αυτό να σημαίνει, ότι και οι κατακόρυφες δεν μπορεί να αποβούν καταστροφικές υπό ορισμένες συνθήκες.

Η χώρα μας βρίσκεται σε μία εξαιρετικά σεισμογενή περιοχή και ως εκ τούτου οι σεισμικές δράσεις παίζουν σημαντικό ρόλο στο σχεδιασμό των κατασκευών. Επομένως, πρέπει να

καλύπτονται τα λεγόμενα έργα «κανονικού κινδύνου», δηλαδή έργα των οποίων η ενδεχόμενη βλάβη περιορίζεται στο ίδιο το έργο , στο περιερχόμενο του και στην άμεση γειτονία του.

Ως σεισμικές δράσεις σχεδιασμού θεωρούνται οι ταλαντώσεις του κτιρίου λόγω του σεισμού, οι οποίες ονομάζονται και σεισμικές διεγέρσεις ή σεισμικές δονήσεις. Οι σεισμικές δράσεις κατατάσσονται στις τυχηματικές και δεν συνδυάζονται με άλλες τυχηματικές δράσεις, όπως επίσης δεν συνδυάζονται με τις δράσεις λόγω ανέμου. Πρόκειται λοιπόν για αδρανειακές δυνάμεις που προέρχονται από την αντίσταση της μάζας της κατασκευής στην μεταδιδόμενη σε αυτήν κίνηση από το έδαφος. Κατά συνέπεια οι σεισμικές δράσεις εξαρτώνται από την φύση της σεισμικής κίνησης του εδάφους (καθοριζόμενη από την επιτάχυνση, την ταχύτητα, τη χρονική διάρκεια και τη διεύθυνση) και την συμπεριφορά της κατασκευής (καθοριζόμενη από την ακαμψία, την κατανομή μάζας, την απόσβεση, τις ιδιότητες του υλικού κλπ.).

Εφόσον, η σεισμική δόνηση για την οποία γίνεται η μελέτη μιας κατασκευής έχει μικρή πιθανότητα να συμβεί κατά τη διάρκεια της ζωής της, θα ήταν αντιοικονομικό να σχεδιαστεί έτσι ώστε να μην πάθει καμία ζημιά (δηλαδή να συμπεριφερθεί ελαστικά) όταν συμβεί αυτός ο σεισμός και να μην εκμεταλλευτεί η ικανότητά της να μπορεί να παραμορφωθεί στην πλαστική περιοχή χωρίς να χάνει την αντοχή και την δυσκαμψία της. Με άλλα λόγια, είναι περισσότερο οικονομικό η κατασκευή να πάθει κάποιες μικρές ζημιές εάν συμβεί ο σεισμός σχεδιασμού, οι οποίες θα επισκευαστούν μετά το σεισμό, παρά να κατασκευαστεί εξ αρχής τόσο ισχυρή ώστε να μπορεί να ανταπεξέλθει σε αυτό το σεισμό χωρίς καθόλου ζημιές. Φυσικά, πρέπει να ληφθούν κατάλληλα μέτρα ώστε οι ζημιές να είναι ελεγχόμενες και επισκευάσιμες. Αυτή η φιλοσοφία αντισεισμικού σχεδιασμού, η οποία έχει υιοθετηθεί από όλους τους σύγχρονους αντισεισμικούς κανονισμούς, διέπεται από τις παρακάτω βασικές αρχές:

Σε μικρούς σεισμούς, η κατασκευή πρέπει να μην υποστεί ζημιές (ελαστική συμπεριφορά).

 Σε μεγάλους σεισμούς με μικρή πιθανότητα να συμβούν στη χρήσιμη ζωή του έργου, η κατασκευή επιτρέπεται να παραμορφωθεί στην πλαστική περιοχή και επομένως να υποστεί ζημιές. Οι ζημιές αυτές πρέπει να είναι περιορισμένης έκτασης και επιδιορθώσιμες.

Πρέπει να εξασφαλιστεί ότι δεν θα υπάρξει κανένας κίνδυνος κατάρρευσης. Για το λόγο αυτό πρέπει να αποκλειστούν μορφές αστοχίας που εγκυμονούν κίνδυνο κατάρρευσης, όπως ο σχηματισμός μαλακού ορόφου (μηχανισμός κατάρρευσης) και ψαθυρές μορφές αστοχίας (π.χ. διατμητική αστοχία).

14

3.5.1 ΖΩΝΗ ΣΕΙΣΜΙΚΗΣ ΕΠΙΚΝΔΥΝΟΤΗΤΑΣ ΚΑΙ ΜΕΓΙΣΤΗ ΣΕΙΣΜΙΚΗ ΕΠΙΤΑΧΥΝΣΗ ΕΔΑΦΟΥΣ

Βασική παράμετρο του Αντισεισμικού Κανονισμού αποτελούν οι σεισμικές δράσεις σχεδιασμού, δηλαδή η ένταση των σεισμικών δονήσεων με βάση την οποία σχεδιάζονται οι κατασκευές σε κάθε περιοχή. Οι σεισμικές δράσεις σχεδιασμού των κατασκευών εξαρτώνται από τη σεισμική επικινδυνότητα κάθε περιοχής. Συγκεκριμένα η Ελλάδα υποδιαιρείται σε τρεις Ζώνες Σεισμικές Επικινδυνότητας (Ι έως ΙΙΙ) των οποίων τα όρια και οι τιμές τους καθορίζονται στο χάρτη σεισμικής επικινδυνότητας σύμφωνα με τον ΕΑΚ 2000. Γι αυτό το λόγο αποτελεί αναπόσπαστο τμήμα του Αντισεισμικού Κανονισμού.

Οι τιμές των σεισμικών επιταχύνσεων εδάφους του Πίνακα 3.6 εκτιμάται, σύμφωνα με τα σεισμολογικά δεδομένα, ότι έχουν πιθανότητα υπέρβασης 10% στα 50 χρόνια.

Ευρισκόμενοι στη Ζώνη ΙΙ έχουμε agr=0.24

Πίνακας 3.6 Χάρτης σεισμικής επικινδυνότητας [12]

3.5.2 ΣΠΟΥΔΑΙΟΤΗΤΑ ΚΤΙΡΙΟΥ

Η εδαφική επιτάχυνση κλιμακώνεται μέσα στην ίδια τη ζώνη ανάλογα με την κατηγορία σπουδαιότητας των έργων, μέσω του συντελεστή σπουδαιότητας γ₁, ο οποίος εκφράζει μικρότερες ή μεγαλύτερες απαιτήσεις απόκρισης. Σύμφωνα, λοιπόν, με τον αντισεισμικό κανονισμό (EAK 2000) υπάρχουν τέσσερις κατηγορίες που αναλύονται στη συνέχεια (πίνακας 3.7). Ο καταμερισμός των χρήσεων σε αυτές τις κατηγορίες γίνεται ανάλογα με τον κίνδυνο που συνεπάγεται για τον άνθρωπο καθώς και τις κοινωνικοοικονομικές συνέπειες που μπορεί να έχει ενδεχόμενη καταστροφή ή διακοπή λειτουργίας τους.

σπουδαι- ότητας	VI	Περιγραφή
1	0.80	Κτίρια δευτερεύουσας σημασίας για τη δημόσια ασφάλεια, π.χ. γεωργικά κτίρια, κλπ.
П	1.00	Συνήθη κτίρια, που δεν ανήκουν στις άλλες κατηγορίες.
ш	1.20	Κτίρια των οποίων η σεισμική ασφάλεια είναι σημαντική, λαμβάνοντας υπόψη τις συνέπειες κατάρρευσης, π.χ. σχολεία, αίθουσες συνάθροισης, πολιτιστικά ιδρύματα κλπ.
IV	1.40	Κτίρια των οποίων η ακεραιότητα κατά τη διάρκεια σεισμών είναι ζωτικής σημασίας για την προστασία των πολιτών, π.χ. νοσοκομεία, πυροσβεστικοί σταθμοί, σταθμοί παραγωγής ενέργειας, κλπ.

Κατηγορία Σπουδαιότητας	Ι	II	II	IV
Συντελεστής Σπουδαιότητας γι	0.80	1.00	1.20	1.40

Πίνακας 3.7 Κατηγορίες σπουδαιότητας κτιρίων και συντελεστής σπουδαιότητας γι [11]

3.5.3 КАТНГОРІА Е $\Delta A \Phi O Y \Sigma$

Στον ΕC8 προδιαγράφονται πέντε κατηγορίες εδάφους Α, Β, C, D και Ε ανάλογα με τη στρωματογραφία και τις παραμέτρους που περιγράφονται παρακάτω (πίνακας 3.8). Υπάρχουν και δύο ειδικές κατηγορίες εδαφών, οι S₁ και S₂, για τις οποίες απαιτούνται ειδικές μελέτες για τον καθορισμό των σεισμικών δράσεων. Στην πτυχιακή αυτή θεωρήθηκε κατηγορία εδάφους D.

Κατη-		Παράμετροι			
εδάφους	Περιγραφή στρωματογραφίας	V5,30	NSPT	c _u (kPa)	
A	Βράχος ή άλλος βραχώδης γεωλογικός σχηματισμός που περιλαμβάνει το πολύ 5 m ασθενέστερου επιφανειακού υλικού	> 800	-	-	
В	Αποθέσεις πολύ πυκνής άμμου, χαλίκων, ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος	360 - 800	> 50	> 250	
С	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου, χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντά- δες μέτρων	180 - 360	15 - 50	70 - 250	
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη συνεκτικών υλικών (με ή χωρίς κάποια μαλακά στρώματα συνεκτικών υλικών), ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά	< 180	< 15	< 70	
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές ν _s κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ περίπου 5 m και 20 m, με υπόστρωμα από πιο σκληρό υλικό με ν _s > 800 m/s				
S ₁	Αποθέσεις που αποτελούνται ή που περιέχουν ένα στρώμα πάχους τουλάχιστον 10 m μαλακών αργίλων/ιλών με υψηλό δείκτη πλαστικότητας (Pl > 40) και υψηλή περιεκτικότητα σε νερό	< 100 (ενδει- κτικό)	-	10 - 20	
S ₂	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων, ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α – Ε ή S ₁				

Κατάταξη εδαφών

Πίνακας 3.8 Κατηγορίες εδάφους [11]

ΚΕΦΑΛΑΙΟ 4: ΣΥΝΔΥΑΣΜΟΙ ΔΡΑΣΕΩΝ

4.1 ΓΕΝΙΚΑ

Ανάλογα με το είδος, τη μορφή και τη θέση της κατασκευής, προσδιορίζονται οι διάφορες χαρακτηριστικές τιμές των δράσεων, οι οποίες επενεργούν σ' αυτήν. Οι δράσεις αυτές, πολλαπλασιασμένες με κατάλληλους συντελεστές (επιμέρους συντελεστές ασφαλείας γ), συνδυάζονται μεταξύ τους καταλλήλως (συντελεστές συνδυασμού ψ) για κάθε μία από τις δύο οριακές καταστάσεις και στη συνέχεια εφαρμόζονται επί του φορέα. Γίνεται διάκριση μεταξύ οριακών καταστάσεων αστοχίας (Ο.Κ.Α.) και των οριακών καταστάσεων λειτουργικότητας (Ο.Κ.Λ.). Είναι προφανές ότι οι δράσεις που υπεισέρχονται στους συνδυασμούς ενεργούν ταυτόχρονα.

Οι σχετικές καταστάσεις σχεδιασμού θα πρέπει να επιλέγονται σε συνάρτηση με τις συνθήκες υπό τις οποίες η φέρουσα κατασκευή καλείται να επιτελέσει τη λειτουργία της, διακρίνονται δε στις εξής:

- Με διάρκεια (persistent), οι οποίες αναφέρονται στις συνθήκες κανονικής χρήσης.

- Παροδικές (transient), οι οποίες αναφέρονται σε προσωρινές συνθήκες οι οποίες είναι εφαρμόσιμες στο φορέα, π.χ. κατά τη διάρκεια της εκτέλεσης ή της επισκευής του.

 Τυχηματικές (accidental), οι οποίες αναφέρονται σε εξαιρετικές περιπτώσεις συνθηκών οι οποίες αφορούν στον φορέα ή στην έκθεσή του, π.χ. πυρκαγιά, έκρηξη, πρόσκρουση ή οι συνέπειες τοπικής αστοχίας.

- Έναντι σεισμού (seismic), οι οποίες αναφέρονται σε συνθήκες οι οποίες είναι εφαρμόσιμες στον φορέα, όταν αυτός εκτίθεται σε σεισμικά συμβάντα.

4.2 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΑΣΤΟΧΙΑΣ

Αυτές σχετίζονται εξ ορισμού με την ασφάλεια των ανθρώπων και/ή την ασφάλεια του φορέα, υπό ορισμένες δε συνθήκες, και αυτές που αφορούν την προστασία των περιεχομένων.

Θα ελέγχονται, εφόσον βέβαια έχουν εφαρμογή, οι ακόλουθες Ο.Κ.Α.

απώλεια ισορροπίας του θεωρούμενου ως άκαμπτου σώματος φορέα ή οποιουδήποτε
 μέρους του, όπου ως κρίσιμοι παράγοντες αναδεικνύονται μικρές διακυμάνσεις στην τιμή ή
 στη χωρική κατανομή των δράσεων ενιαίας προέλευσης, ενώ δεν είναι κρίσιμη η
 αντοχή/αντίσταση των υλικών

- καθαυτή δομική αστοχία, λόγω υπερβάλλουσας παραμόρφωσης, μετατροπής του φορέα ή οποιουδήποτε μέρους του σε μηχανισμό, θραύσης, απώλειας ευστάθειας του φορέα ή οποιουδήποτε μέρους του, συμπεριλαμβανομένων των στηρίξεων και των θεμελίων, όπου κρίσιμη αναδεικνύεται η αντοχή/αντίσταση των υλικών (ή του εδάφους, αντίστοιχα)

 - αστοχία η οποία προκαλείται από κόπωση ή άλλες επιδράσεις που εξαρτώνται από το χρόνο.

4.2.1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΔΥΑΣΜΩΝ ΔΡΑΣΕΩΝ ΣΤΗΝ ΟΡΙΑΚΗ ΚΑΤΑΣΤΑΣΗ ΑΣΤΟΧΙΑΣ

Οι συνδυασμοί δράσεων στην οριακή κατάσταση αστοχίας καθορίζονται σύμφωνα με

τις διατάξεις του ΕΝ 1990:2002 και είναι οι εξής:

(α) Καταστάσεις διάρκειας ή παροδικές

$$\sum_{j^{3}1} \gamma_{G,j} \times G_{k,j} "+ "\gamma_p \times P" + "\gamma_{Q,1} \times Q_{k,1} "+ "\sum_{i>1} \gamma_{Q,i} \times \psi_{0,i} \times Q_{k,i}$$

(β) Για τυχηματικές καταστάσεις

$$\sum_{j^{3}1} G_{k,j}"+"P"+"A_{d}"+"\psi_{1,1}(\dot{\eta} \ \psi_{2,1}) \times Q_{k,1}"+"\sum_{i>1} \psi_{2,i} \times Q_{k,i}$$

(γ) Για καταστάσεις σεισμού

$$\sum_{j^{3}1} G_{k,j}"+"P"+"A_{Ed}"+"\sum_{j^{3}1} \psi_{2,i} \times Q_{k,i}$$

Οι προτεινόμενες τιμές των συντελεστών συνδυασμού ψ_i, που ορίζει το Εθνικό Προσάρτημα και οι συντελεστές συνδυασμού ψ_i του φορτίου χιονιού S, του ανέμου W και του επιβαλλόμενου φορτίου q που δρουν σε μια κατασκευή δίνονται στον πίνακα 4.1.

Δράσεις	W ⁰	V!	W ²
Επιβαλλόμενα φορτία σε κτίρια, κατηγορία (βλέπε ΕΝ 1991-1-1)			
Κατηγορία Α: κατοικίες, συνήθη κτίρια κατοικιών	0,7	0,5	0,3
Κατηγορία Β: χώροι γραφείων			
Κατηγορία C: χώροι συνάθροισης	0,7	0,5	0,3
Κατηγορία D: χώροι καταστημάτων	0,7	0,7	0,6
Κατηγορία Ε: χώροι αποθήκευσης	0,7	0,7	0,6
Κατηγορία F: χώροι κυκλοφορίας οχημάτων βάρος οχημάτων ≤ 30kN	1,0	0,9	0,8
Κατηγορία G: χώροι κυκλοφορίας οχημάτων	0,7	0,7	0,6
30kN < βάρος οχημάτων ≤ 160kN	0,7	0,5	0,3
Κατηγορία Η: στέγες	0	0	0
Φορτία χιονιού επάνω σε κτίρια (βλέπε ΕΝ 1991-1-3)			
Φινλανδία, Ισλανδία, Νορβηγία, Σουηδία Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες	0,7	0,5	0,2
που βρίσκονται σε υψόμετρο Η > 1000 m Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες	0,7	0,5	0,2
που βρίσκονται σε υψόμετρο Η ≤ 1000 m	0,5	0,2	0
Φορτία ανέμου σε κτίρια (βλέπε ΕΝ 1991-1-4)	0,6	0,2	0
Θερμοκρασία (εκτός-πυρκαϊάς) σε κτίρια (βλ. ΕΝ 1991-1-5)	0,6	0,5	0

Πίνακας 4.1 Συντελεστές συνδυασμού δράσεων ψ [13]

4.3 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ

Πρόκειται για τις οριακές καταστάσεις, οι οποίες αφορούν:

- τη λειτουργία ενός φορέα ή ενός δομικού μέλους υπό συνθήκες φυσιολογικής χρήσης

- την άνεση των ανθρώπων

την εξωτερική εμφάνιση των κατασκευών (σε σχέση με τη λειτουργικότητα, λ.χ.
 ρηγματώσεις, αισθητά βέλη)

Στην πράξη ο έλεγχος των οριακών καταστάσεων λειτουργικότητας (σε σχέση πάντα με τα προαναφερόμενα) θα αφορά :

- τις παραμορφώσεις
- τις δονήσεις και ταλαντώσεις
- βλάβες (όπως η ρηγμάτωση)

4.3.1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΔΥΑΣΜΩΝ ΔΡΑΣΕΩΝ ΣΤΗΝ ΟΡΙΑΚΗ ΚΑΤΑΣΤΑΣΗΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ

Οι συνδυασμοί δράσεων στην οριακή κατάσταση λειτουργικότητας καθορίζονται

σύμφωνα με τις διατάξεις του ΕΝ 1990:2002 (§ 6.5.3) και είναι οι εξής:

α) Χαρακτηριστικός συνδυασμός

$$\sum_{j^{3}1} G_{k,j}"+"P"+"Q_{k,1}"+"\sum_{i>1} \psi_{0,i} \times Q_{k,i}$$

β) Συχνός συνδυασμός

$$\sum_{j^{3}1} G_{k,j}"+"P"+"\psi_{1,1} \times Q_{k,1}"+"\sum_{i>1} \psi_{2,i} \times Q_{k,i}$$

Χρησιμοποιείται για αναστρέψιμες οριακές καταστάσεις

γ) Οιονεί – μόνιμος συνδυασμός

$$\sum_{j^{3}1} G_{k,j}"+"P"+"\sum_{i^{3}1} \psi_{2,i} \times Q_{k,i}$$

Χρησιμοποιείται για μακροχρόνιες επιδράσεις και για την εμφάνιση του φορέα

Οι προτεινόμενες τιμές των συντελεστών συνδυασμού ψ_i, που ορίζει το Εθνικό Προσάρτημα, δίνονται στον πίνακα 4.1.

<u>ΚΕΦΑΛΑΙΟ 5: ΘΕΜΕΛΙΩΔΕΙΣ ΕΝΝΟΙΕΣ ΑΝΤΙΣΕΙΣΜΙΚΟΥ</u> ΣΧΕΔΙΑΣΜΟΥ

Ο αντισεισμικός σχεδιασμός αναφέρεται στο σχεδιασμό κατασκευών ικανών να ανθίστανται επαρκώς σε σεισμικές διεγέρσεις με σκοπό τη μεγιστοποίηση της ασφάλειας των ανθρώπων. Κάθε κατασκευή είναι ξεχωριστή λόγω της περιοχής, της γεωλογίας του εδάφους αλλά και γεωμετρικών και σχεδιαστικών χαρακτηριστικών του κτιρίου.

Τα τελευταία έτη ενσωματώνονται αρχές και διατάξεις του Ευρωπαϊκού Αντισεισμικού Κανονισμού (Ευρωκώδικας 8 – Αντισεισμικός Σχεδιασμός) στον Ελληνικό Αντισεισμικό Κανονισμό (ΕΑΚ 2000), ο οποίος έχει ως στόχο να βελτιώσει την ασφάλεια των κτιρίων υπό ανέγερση. Σύμφωνα με αυτόν, η διαχείριση της σεισμικής κρίσης ενός μεγάλου και καταστροφικού σεισμού αφορά όχι μόνο το κάθε κτίριο μεμονωμένα αλλά το σύνολο του δομημένου περιβάλλοντος που έχει οικοδομηθεί σε διαφορετικές χρονικές περιόδους με διαφορετικούς κανονισμούς, ή και χωρίς κανένα κανονισμό.

5.1 ΙΚΑΝΟΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ

Ένας από τους βασικούς κανόνες της φιλοσοφίας αντισεισμικού σχεδιασμού είναι η αποφυγή του κινδύνου μερικής ή ολικής κατάρρευσης ακόμη και εάν συμβεί σεισμός μεγαλύτερος του σεισμού σχεδιασμού. Για να εξασφαλιστεί αυτό απαιτείται να ικανοποιούνται οι παρακάτω προϋποθέσεις:

- Η μετελαστική απόκριση της κατασκευής πρέπει να έχει πλάστιμη μορφή. Αυτό εξασφαλίζεται με κατάλληλη όπλιση των διατομών στις οποίες προβλέπεται να συμβούν πλαστικές αρθρώσεις, κυρίως μέσω κατάλληλου οπλισμού περίσφιγξης.
- Οι πλαστικές αρθρώσεις πρέπει να κατανέμονται σε όσο το δυνατόν μεγαλύτερο πλήθος
 φερόντων στοιχείων. Αυτό εξασφαλίζεται με σωστή κατανομή των δυσκαμψιών.
- Αποφυγή όλων των πιθανών ψαθυρών μορφών αστοχίας όπως είναι η αστοχία σε διάτμηση. Αυτό εξασφαλίζεται μέσω του ικανοτικού σχεδιασμού έναντι τέμνουσας.
- Αποφυγή σχηματισμού μηχανισμού ορόφου, δηλαδή συγκέντρωση των πλαστικών παραμορφώσεων στα άκρα των υποστυλωμάτων του μαλακού ορόφου (Εικόνα 5.1).
 Αυτό εξασφαλίζεται μέσω του ικανοτικού ελέγχου κόμβων.

Εικόνα 5.1 (α) Ανεπιθύμητη μορφή αστοχίας (β) Επιθυμητή κατανομή πλαστικών αρθρώσεων^[4]

Με τον όρο ικανοτικές δράσεις νοούνται οι δράσεις που αντιστοιχούν στις συνθήκες ισορροπίας, όταν στις θέσεις που προβλέπεται σχηματισμός πλαστικών αρθρώσεων αναπτύσσεται ροπή ίση με το υπολογιστικό άνω όριο της ροπής αντοχής της διατομής, λαμβανομένου υπόψη του πραγματικού οπλισμού και της υπεραντοχής. Δηλαδή, η ικανοτική ένταση αντιστοιχεί στη μέγιστη ένταση που μπορεί να αναπτυχθεί στην κατασκευή για ελαστοπλαστική συμπεριφορά, με την παραδοχή ότι στις θέσεις των πλαστικών αρθρώσεων έχει εξαντληθεί η αντοχή των διατομών.

5.2 ΠΛΑΣΤΙΚΕΣ ΑΡΘΡΩΣΕΙΣ

Η πλαστιμότητα εκφράζει την ευκολία παραμόρφωσης του φορέα χωρίς μεγάλη μείωση της αντοχής του. Σύμφωνα με τον αντισεισμικό σχεδιασμό λοιπόν, οι κατασκευές επιτρέπεται να διαρρεύσουν αν συμβεί ο σεισμός σχεδιασμού, αλλά θα πρέπει οι βλάβες που θα υποστούν να είναι περιορισμένες και επιδιορθώσιμες. Να παραμορφωθούν πλαστικά και έτσι ένα μέρος της σεισμικής ενέργειας να καταναλωθεί σαν έργο πλαστικής παραμόρφωσης. Το πόσο μεγάλες βλάβες θα υποστεί η κατασκευή εξαρτάται από το πόσο πολύ θα παραμορφωθεί στην πλαστική περιοχή. Αυτό εξαρτάται από το πόσο πολύ μεγαλύτερη είναι η μέγιστη ανελαστική μετακίνηση d_m που θα αναπτυχθεί σε σύγκριση με τη μετακίνηση διαρροής d_y. Ποσοτικά, αυτό μετριέται με το δείκτη πλαστιμότητας μ, ο οποίος ορίζεται από τη σχέση:

$$\mu = \frac{d_m}{d_y}$$

Όσο μεγαλύτερος από τη μονάδα είναι ο δείκτης πλαστιμότητας που θα αναπτυχθεί σε ένα σεισμό, τόσο μεγαλύτερη είναι η πλαστική παραμόρφωση της κατασκευής, άρα τόσο μεγαλύτερες οι βλάβες. Επομένως, για να περιορίσουμε τις βλάβες πρέπει να εξασφαλίσουμε ότι, εάν συμβεί ο σεισμός σχεδιασμού, η κατασκευή δεν θα αναπτύξει δείκτη πλαστιμότητας μεγαλύτερο από κάποια μέγιστη επιτρεπόμενη τιμή. Η πλαστιμότητα εξασφαλίζεται μέσω της πλάστιμης συμπεριφοράς των μελών της. Ο χάλυβας χαρακτηρίζεται ως όλκιμο υλικό, έχει δηλαδή μεγάλη πλαστιμότητα, άρα έχει και μεγαλύτερα περιθώρια αναλήψεως φορτίων.

Οι αντισεισμικοί κανονισμοί καθορίζουν έμμεσα, μέσω του συντελεστή συμπεριφοράς q που περιγράφεται παρακάτω, τη μέγιστη τιμή του επιτρεπόμενου δείκτη πλαστιμότητας, με βάση το υλικό και το στατικό σύστημα, ώστε να εξασφαλιστεί το κριτήριο του περιορισμού των βλαβών. Οι τιμές αυτές έχουν προκύψει από παρατηρήσεις μετά από σεισμούς και πληθώρα πειραματικών και αναλυτικών διερευνήσεων.

Η επαρκής πλαστιμότητα μιας κατασκευής επιτρέπει στα μέλη της να αναπτύσσουν ανελαστικές παραμορφώσεις χωρίς να χάνουν την αντοχή τους μετά τη διαρροή. Η πλαστική συμπεριφορά επιτρέπει μεγάλες ανελαστικές παραμορφώσεις, διατηρώντας την αντοχή και επιτρέποντας την απορρόφηση και την απελευθέρωση της σεισμικής ενέργειας μέσω σταθερών βρόχων υστέρησης.

Οι ανελαστικές παραμορφώσεις εμφανίζονται στα μέλη μιας κατασκευής όταν διαρρεύσουν. Η διαρροή συμβαίνει όταν η ένταση σε μια διατομή ξεπεράσει την αντοχή της. Οι θέσεις στις οποίες αναμένεται να αναπτυχθούν ανελαστικές παραμορφώσεις μπορούν να εντοπιστούν με βάση την κατανομή των εντατικών μεγεθών από τα κατακόρυφα φορτία και τη σεισμική δράση. Συνήθως, αυτές οι θέσεις βρίσκονται στα άκρα των δοκών, στην κορυφή και στη βάση των υποστυλωμάτων, καθώς και σε περιοχές με μεγάλο συγκεντρωμένο φορτίο. Πρόκειται για τοπικές εκδηλώσεις «ελεγχόμενων» ζημιών.

Ο σχεδιασμός νέων κατασκευών λαμβάνει υπόψη τις κρίσιμες περιοχές στις δοκούς και τα υποστυλώματα, οι οποίες εκτείνονται σε συγκεκριμένες αποστάσεις από τα άκρα των μελών και για τις οποίες λαμβάνονται αυξημένα μέτρα, ώστε να ανταπεξέλθουν στις αυξημένες απαιτήσεις παραμόρφωσης σε περιπτώσεις ακραίας σεισμικής έντασης.

Καθώς η ένταση σε μια κατασκευή αυξάνεται, τα μέλη της διαρρέουν σταδιακά, επεκτείνοντας τις περιοχές στα άκρα των μελών που επιτρέπουν ανελαστική συμπεριφορά. Αυτές οι περιοχές, γνωστές ως πλαστικές αρθρώσεις, είναι οι ζώνες όπου τα μέλη της κατασκευής αναπτύσσουν ανελαστικές παραμορφώσεις υπό σεισμική φόρτιση. Το υπόλοιπο τμήμα κάθε μέλους παραμένει ελαστικό. Οι πλαστικές αρθρώσεις επιτρέπουν την ανακατανομή της έντασης στην κατασκευή, αυξάνοντας το φορτίο που μπορεί να αντέξει η κατασκευή συνολικά.

Με τις πλαστικές αρθρώσεις, η κατασκευή μπορεί να απορροφά και να απελευθερώνει σεισμική ενέργεια, επιτυγχάνοντας έτσι υψηλή αντοχή και ευκαμψία κατά τη διάρκεια ενός σεισμού.

24

5.3 ΣΥΝΤΕΛΕΣΤΕΣ ΣΥΜΠΕΡΙΦΟΡΑΣ q

Ο συντελεστής συμπεριφοράς, q, εισάγει τη μείωση των σεισμικών επιταχύνσεων της πραγματικής κατασκευής λόγω μετελαστικής συμπεριφοράς, σε σχέση με τις επιταχύνσεις που προκύπτουν υπολογιστικά σε απεριόριστα ελαστικό φάσμα. Εκφράζει δε γενικά την ικανότητα ενός δομικού συστήματος να απορροφά ενέργεια μέσω πλάστιμης συμπεριφοράς.

Η διαστασιολόγηση μιας κατασκευής έναντι σεισμικών φορτίων βασίζεται στο ότι η κατασκευή πρέπει να συμπεριφέρεται ελαστικά για οριζόντια φορτία μικρότερα ή ίσα της δύναμης διαρροής F_y. Στις συνήθεις περιπτώσεις, δεν εξετάζεται στη μελέτη η συμπεριφορά της κατασκευής μετά τη διαρροή και το ελάχιστο απαιτούμενο επίπεδο ασφάλειας εξασφαλίζεται με την κατάλληλη επιλογή του οριζόντιου φορτίου σχεδιασμού F_d που θα ληφθεί υπόψη για τη διαστασιολόγηση της κατασκευής. Η κατασκευή πρέπει να συμπεριφέρεται ελαστικά τουλάχιστον για οριζόντιο φορτίο ίσο με F_d και να διαθέτει ικανοποιητική πλαστιμότητα για τον περιορισμό των βλαβών.

Πρέπει να σημειωθεί ότι το γεγονός ότι μία κατασκευή σχεδιάζεται να συμπεριφέρεται ελαστικά έως οριζόντιο φορτίο F_d, δεν σημαίνει ότι θα διαρρεύσει όταν το οριζόντιο φορτίο γίνει ίσο με F_d. Αυτό συμβαίνει γιατί στο σχεδιασμό λαμβάνονται υπόψη διάφοροι συντελεστές ασφαλείας (π.χ. συντελεστές ασφαλείας υλικών), οι αντοχές των υλικών λαμβάνονται υπόψη με τη χαρακτηριστική και όχι με τη μέση τιμή τους, εφαρμόζονται ελάχιστες διαστάσεις διατομών και οπλισμού, κ.α., με αποτέλεσμα η πραγματική δύναμη διαρροής να είναι υπεραντοχή και συμβολίζεται με γ_{Rd}. Επομένως, ισχύει η εξής σχέση μεταξύ δύναμης διαρροής και δύναμης σχεδιασμού:

$F_y = \gamma_{Rd} \cdot F_d$

Είναι προφανές ότι η τιμή του σεισμικού φορτίου σχεδιασμού F_d , η οποία καθορίζει την επιτάχυνση διαρροής a_y (αφού $F_y = ma_y$) σύμφωνα με την παραπάνω σχέση, επηρεάζει την πλαστιμότητα μ που θα αναπτυχθεί. Επομένως, για να εξασφαλιστεί ότι η πλαστιμότητα μ δεν θα υπερβεί κάποια επιτρεπόμενη τιμή πρέπει και το σεισμικό φορτίο σχεδιασμού F_d να είναι μεγαλύτερο ή ίσο από κάποια αντίστοιχη ελάχιστη τιμή, η οποία προκύπτει διαιρώντας το ελαστικό φορτίο με ένα συντελεστή q που ονομάζεται συντελεστής συμπεριφοράς, δηλαδή:

$$q = \frac{F_e}{F_d}$$

όπου F_e είναι η μέγιστη δύναμη που θα αναπτυσσόταν στην κατασκευή για ελαστική συμπεριφορά (εάν είχε ικανοποιητική αντοχή ώστε να μη διαρρέει στον εξεταζόμενο σεισμό) και F_y η δύναμη διαρροής. Σημειώνεται ότι ο όρος συντελεστής συμπεριφοράς χρησιμοποιείται στους Ευρωπαϊκούς κανονισμούς (ΕΚ8, ΕΑΚ).

Σε μονοβάθμια συστήματα, $F_e = ma_e$, όπου a_e είναι η μέγιστη ελαστική επιτάχυνση που μπορεί να υπολογιστεί από το ελαστικό φάσμα σχεδιασμού με βάση την ιδιοπερίοδο T και την απόσβεση ζ της κατασκευής. Επομένως, $F_e = m \cdot S_e(T, \zeta)$ και το φορτίο σχεδιασμού ισούται με:

$$F_d = \frac{F_e}{q} m \cdot \left(\frac{S_e(T,\zeta)}{q}\right)$$

όπου Se(T, ζ) η ελαστική επιτάχυνση σχεδιασμού και ο όρος μέσα σε παρένθεση ονομάζεται επιτάχυνση σχεδιασμού και στον ΕΚ8 συμβολίζεται με Sd(T, ζ).

Οι αντισεισμικοί κανονισμοί ορίζουν τη μέγιστη τιμή του συντελεστή συμπεριφοράς q που επιτρέπεται να ληφθεί υπόψη στη μελέτη, με βάση το υλικό κατασκευής και το στατικό σύστημα. Όπως αναφέρθηκε παραπάνω, οι επιτρεπόμενες τιμές q έχουν προκύψει από τις επιτρεπόμενες τιμές μ με βάση τη σχέση πλαστιμότητας – συντελεστή συμπεριφοράς που αναφέρονται στη συνέχεια.

Σύμφωνα με την τυπική διαδικασία του αντισεισμικού σχεδιασμού, γίνεται ελαστική ανάλυση για οριζόντιο φορτίο F_d = F_e/q και η κατασκευή διαστασιολογείται με τα αποτελέσματα αυτής της ανάλυσης. Η ελαστική δύναμη F_e υπολογίζεται για την ιδιοπερίοδο της κατασκευής που προκύπτει για δυσκαμψία K_{e,d} = 0.50 K_i, όπου K_i είναι η αρχική δυσκαμψία για αρηγμάτωτες διατομές.

Όπως αναφέρθηκε παραπάνω, το οριζόντιο φορτίο F_y στο οποίο πραγματικά διαρρέει η κατασκευή είναι μεγαλύτερο από το φορτίο σχεδιασμού F_d λόγω της υπεραντοχής. Αντίστοιχα με το συντελεστή συμπεριφοράς q ορίζουμε το συντελεστή συμπεριφοράς διαρροής q_y ως:

$$q_y = \frac{F_e}{F_y}$$

Χρησιμοποιώντας τις παρακάτω εξισώσεις προκύπτει ότι:

$$\begin{cases} F_{y} = \gamma_{Rd} \cdot F_{d} \\ q = \frac{F_{e}}{F_{d}} \\ q_{y} = \frac{F_{e}}{F_{y}} \end{cases} \begin{cases} q = \gamma_{Rd} \cdot q_{y} \end{cases}$$
Με βάση τα παραπάνω, στο Σχ. 5.1 παρουσιάζεται η συμπεριφορά ενός μονοβάθμιου συστήματος τόσο σύμφωνα με τον αντισεισμικό σχεδιασμό για ελαστική συμπεριφορά (διακεκομμένη γραμμή) και ανελαστική συμπεριφορά (συνεχής λεπτή γραμμή) όσο και στην πραγματικότητα (χοντρή γκρι γραμμή). Και στις δύο περιπτώσεις η καμπύλη ικανότητας της κατασκευής είναι χωρίς κράτυνση (οριζόντιος μετελαστικός κλάδος).

Σχήμα 5.1 Συμπεριφορά κατασκευών σύμφωνα με το σχεδιασμό και πραγματική ανελαστική συμπεριφορά^[4]

Μέγιστες τιμές του q δίδονται στον Πίνακα 5.1 με βάση τον ΕΑΚ 2000 ανάλογα με το είδος του υλικού κατασκευής και τον τύπο του δομικού συστήματος. Οι τιμές αυτές ισχύουν υπό την βασική προϋπόθεση ότι για τον σεισμό σχεδιασμού έχουμε έναρξη διαρροής του συστήματος (πρώτη πλαστική άρθρωση) και με την περαιτέρω αύξηση της φόρτισης είναι δυνατός ο σχηματισμός αξιόπιστου μηχανισμού διαρροής με την δημιουργία ικανού αριθμού πλαστικών αρθρώσεων (πλάστιμη συμπεριφορά).

Στην περίπτωσή μας ο συντελεστής συμπεριφοράς q ισούται με 4.

YAIKO	ΔΟΜΙΚΟ ΣΥΣΤΗΜΑ	q		
1. ΟΠΛΙΣΜΕΝΟ	α. Πλαίσια ή μικτά συστήματα	3,50		
ΣΚΥΡΟΔΕΜΑ	β. Συστήματα τοιχωμάτων που λειτουργούν ως πρόβολοι	3,00		
	γ. Συστήματα στα οποία τουλάχιστον το 50% της συνολικής μάζας βρίσκεται στο ανώτερο 1/3 του ύψους	2,00		
2. ΧΑΛΥΒΑΣ	α. Πλαίσια			
	β. Δικτυωτοί σύνδεσμοι με εκκεντρότητα	4,00		
	γ. Δικτυωτοί σύνδεσμοι χωρίς εκκεντρότητα			
	 Διαγώνιοι σύνδεσμοι 	3,00		
	 Σύνδεσμοι τύπου V ή L 	1,50		
	 Σύνδεσμοι τύπου Κ (όπου επιτρέπεται) 	1,00		
3. ΤΟΙΧΟΠΟΙΙΑ	α. Με οριζόντια διαζώματα β. Με οριζόντια και κατακόρυφα διαζώματα			
				γ. Οπλισμένη (κατακόρυφα και οριζόντια)
4. EYAO	α. Πρόβολοι			
	β. Δοκοί – Τόξα - Κολλητά πετάσματα	1,50		
	γ. Πλαίσια με κοχλιώσεις	2,00		
	δ. Πετάσματα με ηλώσεις	3,00		
_				

Σε περίπτωση επιθυμητής ελαστικής συμπεριφοράς λαμβάνεται q = 1.

Πίνακας 5.1 Μέγιστες τιμές συντελεστή συμπεριφοράς q^[13]

5.4 ΣΤΑΘΜΕΣ ΕΠΙΤΕΛΕΣΤΙΚΟΤΗΤΑΣ

Περιγράφουν μια περιοριστική κατάσταση βλαβών, που μπορεί να θεωρηθεί ικανοποιητική για δεδομένο κτίριο και εδαφική κίνηση. Η περιγραφή βασίζεται στις βλάβες του κτιρίου, στην απειλή της ανθρώπινης ζωής και τη λειτουργικότητα μετά το σεισμό.

Για την εξυπηρέτηση ευρύτερων κοινωνικών και οικονομικών αναγκών, θεσπίζονται στον KAN.ΕΠΕ., οι διάφορες στάθμες επιτελεστικότητας του φέροντος οργανισμού, οι οποίες ορίζονται συναρτήσει του βαθμού βλάβης των δομικών στοιχείων, ως εξής, ειδικώς για τις ανάγκες του κανονισμού:

• «Περιορισμένες Βλάβες» (A):

Ο φέρων οργανισμός του κτιρίου έχει υποστεί μόνο ελαφριές βλάβες, με τα δομικά στοιχεία να μην έχουν διαρρεύσει σε σημαντικό βαθμό και να διατηρούν την αντοχή και την δυσκαμψία τους. Οι μόνιμες σχετικές μετακινήσεις των ορόφων είναι αμελητέες. Ως αντίστοιχες βλάβες αναφέρονται οι αραιές τριχοειδείς καμπτικές ρωγμές, χωρίς ευδιάκριτες μόνιμες μετακινήσεις υποστυλωμάτων ή τοιχωμάτων. Κατά την διάρκεια του σεισμού δεν διακόπτεται καμία λειτουργία του κτιρίου εκτός ενδεχομένως από δευτερεύουσας σημασίας λειτουργίες.

• <u>«Σημαντικές Βλάβες» (B):</u>

Ο φέρων οργανισμός του κτιρίου έχει υποστεί σημαντικές και εκτεταμένες αλλά επισκευάσιμες βλάβες, ενώ τα δομικά στοιχεία διαθέτουν εναπομένουσα αντοχή και δυσκαμψία και είναι σε θέση να παραλάβουν τα προβλεπόμενα κατακόρυφα φορτία. Οι μόνιμες σχετικές μετακινήσεις των ορόφων είναι μετρίου μεγέθους. Ο φέρων οργανισμός μπορεί να αντέξει μετασεισμούς μέτριας έντασης. Ως αντίστοιχες βλάβες αναφέρονται οι καμπτικές ρωγμές και διατμητικές ρωγμές, περιορισμένες απολεπίσεις σκυροδέματος, τοπικοί λυγισμοί διαμήκων ράβδων οπλισμού και άνοιγμα ορισμένων αγκίστρων συνδετήρων σε ορισμένα υποστυλώματα ή τοιχώματα. Κατά την διάρκεια του σεισμού δεν αποκλείονται ακόμη σοβαροί τραυματισμοί ατόμων λόγω βλαβών ή πτώσης στοιχείων του μη φέροντος οργανισμού.

«Οιονεί Κατάρρευση» (Γ):

Ο φέρων οργανισμός του κτιρίου έχει υποστεί εκτεταμένες και σοβαρές ή βαριές (μηεπισκευάσιμες κατά πλειονότητα) βλάβες. Οι μόνιμες σχετικές μετακινήσεις των ορόφων είναι μεγάλες. Ο φέρων οργανισμός έχει ακόμα την δυνατότητα να φέρει τα προβλεπόμενα κατακόρυφα φορτία (κατά, και για ένα διάστημα μετά, τον σεισμό), χωρίς πάντως να διαθέτει κανένα ουσιαστικό περιθώριο ασφαλείας έναντι μερικής ή ολικής κατάρρευσης, ακόμα και για μετασεισμούς μέτριας έντασης. Ως αντίστοιχες βλάβες αναφέρονται οι εκτεταμένες θραύσεις και η αποδιοργάνωση του πυρήνα σκυροδέματος μελών, οι τοπικές θραύσεις οπλισμών και το άνοιγμα συνδετήρων. Τα περισσότερα μη φέροντα στοιχεία έχουν καταρρεύσει ή παρουσιάζονται εκτεταμένες αποδιοργανώσεις και καταπτώσεις μεγάλων τεμαχίων τοίχων ή ολόκληρων φατνωμάτων.

	Στάθμη επιτελ	εστικότητας Φέροντα	ς Οργανισμού
Πιθανότητα υπέρβασης σεισμικής δράσης εντός του συμβατικού χρόνου ζωής των 50 ετών	Άμεση χρήση μετά το σεισμό	Προστασία ζωής ενοίκων	Αποφυγή οιωνεί κατάρρευσης
10%	A1	B1	Γ1
50%	A2	B2	Г2

Πίνακας 5.2 Στάθμες επιτελεστικότητας [17]

5.5 ΚΑΜΠΥΛΗ ΙΚΑΝΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΗΣ (CAPACITY CURVE)

Ο καθορισμός των διαφόρων σταθμών επιτελεστικότητας με βάση τον ΕΑΚ 2000 γίνεται πάνω στην καμπύλη ικανότητας της κατασκευής, η οποία εκφράζει τη μη-γραμμική σχέση μεταξύ του επιβαλλόμενου οριζόντιου φορτίου και της μετατόπισης της κορυφής. Η κατασκευή της καμπύλης ικανότητας γίνεται με υπολογισμό της ανελαστικής μετακίνησης d_r ενός σημείου αναφοράς (σε κτίρια συνήθως χρησιμοποιείται η μετακίνηση Δ του κέντρου μάζας του ανώτερου ορόφου) για διάφορες τιμές του συνολικού οριζόντιου φορτίου F_b (δηλαδή της τέμνουσας βάσης) και για δεδομένη κατανομή φορτίων στους ορόφους (Σχ. 5.1). Ως κατανομή των φορτίων καθ' ύψος μπορεί να χρησιμοποιηθεί η τριγωνική κατανομή, ομοιόμορφη κατανομή, η πρώτη ιδιομορφή, ή ακόμη και περισσότερο πολύπλοκες κατανομές που βασίζονται στις μετακινήσεις των ορόφων λαμβάνοντας υπόψη και τη συμμετοχή των ανώτερων ιδιομορφών. Για την κατασκευή αυτής της καμπύλης γίνονται πολλές στατικές επιλύσεις με σταδιακή αύξηση της τέμνουσας βάσης και υπολογισμό της μειωμένη δυσκαμψία των στοιχείων που έχουν διαρρεύσει σε κάθε βήμα.

Σχήμα 5.2 Κατασκευή της καμπύλης ικανότητας πολυώροφου κτιρίου [18]

Για να ελεγχθεί εάν μία κατασκευή ικανοποιεί κάποια στάθμη επιτελεστικότητας πρέπει να ελεγχθεί εάν, για το σεισμό σχεδιασμού με την αντίστοιχη περίοδο επανάληψης, η αναμενόμενη μετακίνηση της κατασκευής (στοχευόμενη μετακίνηση – target displacement) αντιστοιχεί σε σημείο επιτελεστικότητας (performance point) πάνω στην καμπύλη ικανότητας που βρίσκεται πριν την αντίστοιχη στάθμη επιτελεστικότητας.

Σχήμα 5.3 Σύγκριση σημείου επιτελεστικότητας για το σεισμό σχεδιασμού και αντίστοιχης στάθμης επιτελεστικότητας [18]

Για τον υπολογισμό της στοχευόμενης μετακίνησης, συνήθως, χρησιμοποιείται η στατική μη-γραμμική ανάλυση, γνωστή και ως Μέθοδος pushover.

Η γενική φιλοσοφία υπολογισμού που ακολουθείται είναι ότι για τη στοχευόμενη μετακίνηση η ικανότητα της κατασκευής να παραλαμβάνει σεισμικά φορτία (capacity) πρέπει να είναι ίδια με την αντίστοιχη απαίτηση σύμφωνα με το φάσμα σχεδιασμού (demand). Δηλαδή, το σημείο επιτελεστικότητας προκύπτει ως το σημείο τομής του φάσματος ικανότητας της κατασκευής (το φάσμα ικανότητας προκύπτει από μετατροπή της καμπύλης ικανότητας σε μορφή ADRS: Acceleration - Displacement Response Spectrum) και του ανελαστικού φάσματος (επίσης σε μορφή ADRS) για την αντίστοιχη πλαστιμότητα ή του ελαστικού φάσματος για την ενεργό απόσβεση (Σχ. 5.3). Στην απεικόνιση των φασμάτων σε μορφή ADRS, ο κατακόρυφος άξονας αντιστοιχεί στη φασματική ψευδοεπιτάχυνση PSA και ο οριζόντιος στη φασματική μετακίνηση SD. Τα φάσματα ADRS δίνουν τη σχέση μεταξύ της επιτάχυνσης της κατασκευής, και επομένως του σεισμικού φορτίου που αναπτύσσεται, και της μετακίνησης που αυτό προκαλεί.

Σχήμα 5.4 Προσδιορισμός της στοχευόμενης μετακίνησης του ισοδύναμου μονό βάθμιου συστήματος [18]

ΚΕΦΑΛΑΙΟ 6: ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΥΠΟ ΜΕΛΕΤΗ ΚΤΙΡΙΟΥ

6.1 ΠΑΡΟΥΣΙΑΣΗ ΠΡΟΓΡΑΜΜΑΤΟΣ

Για την προσομοίωση, διαστασιολόγηση και ανάλυση του φορέα χρησιμοποιήθηκε το λογισμικό SAP2000 (Computers and Structures Inc.). Το συγκεκριμένο λογισμικό:

• Διαθέτει εύκολο και ευέλικτο περιβάλλον, σχεδιαστικά εργαλεία AutoCAD, που είναι ήδη γνωστά, και δίνει τη δυνατότητα πολλαπλών παραθύρων απεικόνισης του φορέα (3D, xy, xz, yz) για καλύτερη εποπτεία.

Είναι εφοδιασμένο με όλους τους Διεθνείς κανονισμούς,
 συμπεριλαμβανομένων των Ευρωκωδίκων και των Αμερικανικών κανονισμών.

Διαθέτει δυνατότητες στατικής και δυναμικής ανάλυσης, τόσο γραμμικής όσο και μη γραμμικής ανάλυσης, συνδυασμού διαφορετικών ειδών ραβδωτών, πλαισιακών και πεπερασμένων στοιχείων καθώς και ειδικών μη-γραμμικών συνδέσμων και ελατηρίων για εξειδικευμένες αναλύσεις. Στα πλαίσια της δυναμικής ανάλυσης, συμπεριλαμβάνονται δυνατότητες φασματικής ανάλυσης και δυναμικής ανάλυσης με επαλληλία των ιδιομορφών ή απευθείας ολοκλήρωση με διάφορες μεθόδους αριθμητικής ολοκλήρωσης.

 Παρέχει πολλούς διαφορετικούς τύπους στοιχείων, όπως πλαισιακά στοιχεία (frame elements) για προσομοίωση ράβδων δικτυωμάτων και δοκών, επιφανειακά στοιχεία όπως κελύφη (shell) και επίπεδα (plane) στοιχεία, μη γραμμικά στοιχεία σύζευξης (nonlinear links) και τρισδιάστατα στοιχεία (solid elements).

Επιτρέπει την εφαρμογή διαφορετικών ειδών δράσεων, όπως φορτία βαρύτητας,
 θερμοκρασιακών μεταβολών, κατανεμημένα φορτία, επικόμβιες φορτίσεις, κ.λπ.

6.2 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ

Παρακάτω, αναλύεται η διαδικασία που ακολουθήθηκε για την επιλογή των διατομών του φορέα. Αρχικά, έγινε η εισαγωγή των συντεταγμένων για τη δημιουργία του καννάβου αναφοράς των συντεταγμένων της κατασκευής.

File->New Model

S New Model		×		
New Model Initialization Initialize Model from Saved Settings	Project Informat	ion		
Initialize Model from an Existing File Initialize Model from Default Settings Default Units Refault Units Default Units Default Units Default Units	m, C V Modfy	Show Information	Quick Grid Lines	
Save Options as Default	ohe	2	Quick Grid Lines	~
Select Template	20 Trusses 30 Trusses	2D Frames	Cartesian Cylindrical Coordinate System Nam GLOBAL Number of Grid Lines X direction Y direction Z direction Grid Spacing	e 2 2 2
3D Frames Wall Flat Sla	b Shells Staircases	Storage Structures	X direction Y direction Z direction	30, 15, 5.5
Underground Concrete	lates		First Grid Line Location X direction Y direction Z direction	0, 0, 0,
			ОК	Cancel

Εικόνα 6.1 Εισαγωγή νέου μοντέλου

Define->Coordinate Systems/Grids

Επιλογή "Modify/Show System"

System Name		GLO	BAL				Grid Lines Quick Start
Grid Data							
Grid ID	Ordinate (m)	Line Type	Visible	Bubble Lo	c Grid Color		A B
A	0	Primary	Yes	End		Add	I Y Y
8	30	Primary	Yes	End		Delete	
Grid Data							Display Grids as
Grid ID	Ordinate (m)	Line Type	Visible	Bubble Lo	c Grid Color		Ordinates O Spacin
1	0	Primary	Yes	Start		Add	
1 2	0 7,5	Primary Primary	Yes Yes	Start Start		Add	Hide All Grid Lines
1 2 3	0 7,5 15	Primary Primary Primary	Yes Yes Yes	Start Start End		Add Delete	Hide All Grid Lines
1 2 3	0 7,5 15	Primary Primary Primary	Yes Yes Yes	Start Start End		Add Delete	Hide All Grid Lines Glue to Grid Lines Bubble Size 4.1875
1 2 3 Grid Data	0 7.5 15	Primary Primary Primary	Yes Yes Yes	Start Start End		Add Delete	Hide All Grid Lines Glue to Grid Lines Bubble Size 4,1875 Reset to Default Color
1 2 3 Grid Data	0 7,5 15 Οrdinate (π	Primary Primary Primary	Yes Yes Yes	Start Start End Visible	Bubble Loc	Add Delete	Hide All Grid Lines Glue to Grid Lines Bubble Size 4,1875 Reset to Default Color Reorder Ordinates
1 2 3 Grid Data Grid D 21	0 7,5 15 Ordinate (m 0	Primary Primary Primary n) Line Pri	Yes Yes Yes	Start Start End Visible Yes	Bubble Loc End	Add Delete Add	Hide All Grid Lines Glue to Grid Lines Bubble Size 4.1875 Reset to Default Color Reorder Ordinates
1 2 3 Grid Data Grid D 21 22	0 7.5 15 Ordinate (m 0 5.5	Primary Primary Primary n) Line Pri Prin	Yes Yes Yes Type mary mary	Start Start End Visible Yes Yes	Bubble Loc End End	Add Delete Add	Hide AI Grid Lines Glue to Grid Lines Bubble Size 4.1875 Reset to Default Color Reorder Ordinates

Εικόνα 6.2 Συντεταγμένες καννάβου

Στη συνέχεια, επιλέγονται τα υλικά της κατασκευής.

Define->Materials->Add New Material

Το υλικό το οποίο επιλέγεται να χρησιμοποιηθεί είναι χάλυβας κατηγορίας S275 του οποίου τα χαρακτηριστικά μπορούμε να βρούμε στον Ευρωκώδικα 3.

General Data			
Material Name and Display 0	Color	\$275	
Material Type		Steel	
Material Grade		S275	
Material Notes		Mo	dify/Show Notes
Weight and Mass			Units
Weight per Unit Volume	78,5		KN, m, C
Mass per Unit Volume	8,0048		
Isotropic Property Data			
Modulus Of Elasticity, E			2,100E+08
Poisson, U			0,3
Coefficient Of Thermal Expa	ansion, A		1,170E-05
Shear Modulus, G			80769231,
Other Properties For Steel Ma	aterials		
Minimum Yield Stress, Fy			275000,
Minimum Tensile Stress, Fu			430000,
Expected Yield Stress, Fye			302500,
Expected Tensile Stress, Fu			473000,

Εικόνα 6.3 Καθορισμός χαρακτηριστικών του δομικού χάλυβα

Έπειτα γίνεται η εισαγωγή των πρότυπων διατομών από το αρχείο Euro.pro. Επιλέγουμε και εισάγουμε τις διατομές από ΗΕ100Β έως ΗΕ550Β, ΙΡΕ100 έως ΙΡΕ600 και κάποιες διατομές TUBO

Define->Section Properties->Frame	Sections->Import New	Property
-----------------------------------	----------------------	----------

roperties	C	ick to:
Find this property:		Import New Property
PE600		
HE100B	^	Add New Property
HE120B		
HE140B		Add Copy of Property
HE160B		Add copy of hopolity
HE180B		Hard Charles Descent
HE200B		Modify/Show Property
HE220B		
HE240B		Delete Property
HE260B		
HE280B		
HE300B		
HE320B	~	

Το πρόγραμμα έχει τη δυνατότητα να κάνει τη βέλτιστη επιλογή ανάμεσα από τις διατομές που είναι διαθέσιμες στην λίστα που θα καθορίσουμε. Η επιλογή γίνεται με βάση τους ελέγχους επάρκειας που καθορίζουν οι κανονισμοί. Θα δημιουργήσουμε λοιπόν τρεις λίστες, μια για τα υποστυλώματα, μία για τους αμείβοντες και μία για μηκίδες, τεγίδες και οριζόντιους συνδέσμους δυσκαμψίας. Έτσι για τη δημιουργία των λιστών ακολουθούμε τις παρακάτω εντολές.

Define->Section Properties->Frame Sections->Add New Property->Auto Select List

Auto Section Name	ΥΠΟΣΤΥΛΩΜΑΤΑ	
Auto Section Type	Steel	
Section Notes	Modify/Show Notes	č.
choose Sections:		
List of Sections	Auto Selections	
HE100B	HE220B	^
HE120B	HE240B	
HE140B	Add -> HE260B	
HE100D	HE200B	
HE200B	<- Remove HE320B	
HE650B	HE340B	
HE700B	Show HE360B	
HE800B V	HE400B	~
Starting Section		
HE300B	Overwrite	

Εικόνα 6.5 Λίστα αυτόματης επιλογής διατομών ΥΠΟΣΤΥΚΩΜΑΤΩΝ κατά το σχεδιασμό

Auto Section Nam	e	AMEIBO	ντας	
Auto Section Type		Steel		
Section Notes		1	lodify/Show Note	s
hoose Sections:				
List of Sections			Auto Selection	15
HE100B	^		IPE100	^
HE120B			IPE120	
HE140B	1	Add >	IPE140	
HE160B		AUU ->	IPE160	
HE180B		r Damaur	IPE180	
HE200B		~ Henove	IPE200	
HE220B		Show	IPE220	
HE240B	~		IPE240 IPE270	~
tarting Section				
Median			Overwr	te

Εικόνα 6.6 Λίστα αυτόματης επιλογής διατομών για τους ΑΜΕΙΒΟΝΤΕΣ κατά το σχεδιασμό

Auto Section Nan	ne	MHKIDE:	Σ-ΤΕΓΙΔΕΣ-ΟΡΙΖΟΝΤΙΟΙ ΣΥΙ
Auto Section Type		Steel	
Section Notes		1	lodify/Show Notes
hoose Sections:			
List of Sections			Auto Selections
HE1000B IPE220 IPE240 IPE270 IPE300 IPE330 IPE360 IPE400 IPE450	~	Add -> <- Remove Show	IPE100 IPE120 IPE140 IPE160 IPE180 IPE200
tarting Section			
Median			Overwrite

Εικόνα 6.7 Λίστα αυτόματης επιλογής για ΜΗΚΙΔΕΣ-ΤΕΓΙΔΕΣ-ΟΡΙΖΟΝΤΙΟΙ ΣΥΝΔΕΣΜΟΙ ΔΥΣΚΑΜΨΙΑΣ κατά το σχεδιασμό

Για το σχεδιασμό λοιπόν του μοντέλου ακολουθούμε τις παρακάτω εντολές.

Draw->Draw Frame/Cable/Tendon

Επιλέγουμε τη λίστα από την οποία θέλουμε να εισάγουμε τις διατομές ανάλογα με το τι μέλος σχεδιάζουμε και έπειτα χαράσσουμε τη γραμμή που ορίζει γραμμικό πεπερασμένο στοιχείο.

Line Object Type	Straight Frame
Section	ΑΜΕΙΒΟΝΤΑΣ
Moment Releases	Continuous
Local Axis Rotation	0,
XY Plane Offset Normal	0,
Drawing Control Type	None <space bar=""></space>

Εικόνα 6.8 Σχεδίαση μέλους

Για την προσομοίωση των στηρίξεων του φορέα στο έδαφος επιλέχθηκαν συνθήκες πάκτωσης.

Assign->Joint-Restraints

S Assign Joint Restraints	×
Restraints in Joint Local Directions	
✓ Translation 1 ✓ Rotation about 1	
✓ Translation 2 ✓ Rotation about 2	
✓ Translation 3 ✓ Rotation about 3	
Fast Restraints	
OK Close Apply	

Εικόνα 6.9 Καθορισμός στηρίζεων

Προκειμένου να απελευθερωθούν οι ροπές στα άκρα όλων των συνδέσμων δυσκαμψίας επιλέγονται όλοι οι σύνδεσμοι.

Assign->frame->releases/partial fixity

	Rele	ase		Frame Partial Fixity Springs			
	Start	End	Start		End		
xial Load							
hear Force 2 (Major)							
hear Force 3 (Minor)							
orsion							
Noment 22 (Minor)	\checkmark	\checkmark	0	kN-m/rad	0	kN-m/rad	
foment 33 (Major)	\checkmark	\checkmark	0	kN-m/rad	0	kN-m/rad	

Εικόνα 6.10 Απελευθέρωση ροπών

Με βάση τον Ευρωκώδικα 8 σε περίπτωση που η κατασκευή σχεδιάζεται να συμπεριφέρεται ανελαστικά στο σεισμό σχεδιασμού (απορρόφηση ενέργειας μέσω πλάστιμης συμπεριφοράς των φερόντων στοιχείων), δεν απαιτείται ανελαστική ανάλυση, αλλά γίνεται ελαστική ανάλυση με βάση μειωμένο φάσμα σχεδιασμού σε σύγκριση με το ελαστικό φάσμα. Η μείωση του ελαστικού φάσματος γίνεται μέσω του συντελεστή συμπεριφοράς q. Καθορίζεται, λοιπόν το φάσμα σχεδιασμού, το οποίο παρέχεται έτοιμο από τη βιβλιοθήκη του SAP2000, ώστε να πραγματοποιηθεί η φασματική ανάλυση.

Define->Functions->Response Spectrum

Function Na	me	[QUAKE	Function Dampin	g Ratio
Parameters				Define Function	
Country	CEN D	efault	~	Period Acceleration	
Direction		Horizontal	~	Add	
Horizontal Ground Accel	ag/g	0,24		0, 0,216 0,0667 0,2115 Modify	
Spectrum Type		1	~	0,1333 0,207 0,2 0,2025 Delete	
Ground Type		D	~	0,8 0,2025	
Soil Factor, S		1,35		1,2 0,135	
Acceleration Ratio, Avg/	Ag		_	1,4 0,1157 0	
Spectrum Period, Tb		0,2		Function Graph	
Spectrum Period, Tc		0,8			
Spectrum Period, Td		2,			
Lower Bound Factor, Bet	a	0,2	_		
Behavior Factor, g		4.			
				· · · · · · · · · · · · · · · · · · ·	
Convert to	User De	fined		Display Graph	-

Εικόνα 6.11 Καθορισμός φάσματος σχεδιασμού

Για την πραγματοποίηση της στατικής ανάλυσης πρέπει να εφαρμόσουμε τα μόνιμα και τα ωφέλιμα φορτία στην κατασκευή και έπειτα να πραγματοποιήσουμε τη γραμμική, στατική ανάλυση.

Define->Load Patterns->Add new load pattern

Εικόνα 6.12 Καθορισμός των LOAD PATTERNS

Δημιουργούμε συνδυασμούς δράσεων οι οποίοι αποσκοπούν στην παραγωγή οριακών καταστάσεων καταπόνησης.

Define->Load Combinations->Add New Combo

1.35G + 1.5Q + 0.75SNOW

1.35G + 1.05Q + 1.5SNOW

 $G + 0.3Q + 0.3SNOW \pm RS_X \pm 0.3RS_Y$

$$G + 0.3Q + 0.3SNOW \pm 0.3RS X \pm RS Y$$

Έπειτα από τη δημιουργία συνδυασμών δράσεων ακολούθησε η επιβολή των φορτίων του χιονιού, του κινητού και της επικάλυψης (εικόνες 6.13, 6.14, 6.15) τα οποία από επιφανειακά μετατρέπονται σε γραμμικά και προκύπτουν τα εξής:

Χιόνι: 0.32 * 6 = 1.92 kN/m

Κινητό: 0.5 * 6 = 3 kN/m

Επικάλυψη: 0.18 * 6 = 1.08 kN/m

Define->Load Patterns

Εικόνα 6.13 Σχεδιασμός φόρτισης SNOW

Εικόνα 6.14 Σχεδιασμός φόρτισης ΕΠΙΚΑΛΥΨΗΣ

Εικόνα 6.15 Σχεδιασμός φόρτισης κινητού φορτίου

Με επαναληπτικές διαδικασίες αυξομειώνονται οι διατομές των στοιχείων του φορέα χειροκίνητα, έτσι ώστε με την εκτέλεση της ανάλυσης μέσω του προγράμματος να επαρκούν

έναντι των δεδομένων ελέγχων και επιπλέον να είναι οικονομική η ανέγερση της κατασκευής. Η τελική μόρφωση του φορέα παρουσιάζεται παρακάτω, (Εικόνα 6.15).

Design->Steel Frame Design -> Start Design /Check of Structure

Εικόνα 6.16 Μόρφωση του φορέα μετά τη διαστασιολόγηση-Τρισδιάστατη απεικόνιση

Επομένως, οι διατομές που επιλέχθηκαν φαίνονται στον πίνακα 6.1.

ΥΠΟΣΤΥΛΩΜΑΤΑ	HEB360
ΑΜΕΙΒΟΝΤΕΣ	IPE270
ΜΗΚΙΔΕΣ-ΤΕΓΙΔΕΣ-ΟΡΙΖΟΝΤΙΟΙ ΣΥΝΔΕΣΜΟΙ ΔΥΣΚΑΜΨΙΑΣ	IPE140
ΚΑΤΑΚΟΡΥΦΟΙ ΣΥΝΔΕΣΜΟΙ ΔΥΣΚΑΜΨΙΑΣ	CHS88.9x3.2 (TUBO-D88.9*3.2)

Πίνακας 6.1 Τελικές διατομές

<u>ΚΕΦΑΛΑΙΟ 7: ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΝΔΕΣΕΩΝ ΥΠΟ ΜΕΛΕΤΗ</u> <u>ΚΤΙΡΙΟΥ</u>

Κάθε κατασκευή αποτελείται από διάφορα στοιχεία ή μέλη, τα οποία ενώνονται μεταξύ τους με τη βοήθεια κάποιων μέσων συνδέσεως. Οι συνδέσεις αναλαμβάνουν τη μεταφορά των δυνάμεων μεταξύ των στοιχείων της κατασκευής και ουσιαστικά την τελική ροή των δράσεων επί της κατασκευής. Ως μέσα συνδέσεως έχουμε την ήλωση (riveting), τη κοχλίωση (bolting) και τη συγκόλληση (welding). Πρέπει να σχεδιάζονται έτσι ώστε να επιτυγχάνεται η πλήρης εκμετάλλευση της αντοχής και της πλαστιμότητας των συνδεόμενων μελών και να υπολογίζονται κατά τρόπο που να καθιστούν την κατασκευή και ανέγερση των φορέων όσο το δυνατόν πιο απλή και γρήγορη.

Στην παρούσα πτυχιακή οι συνδέσεις διαστασιολογήθηκαν με τη βοήθεια του προγράμματος Robot Structural Analysis Professional 2024 της Autodesk. Συγκεκριμένα, μελετήθηκαν οι παρακάτω συνδέσεις:

- Σύνδεση ζυγωμάτων IPE 270
- Σύνδεση υποστυλώματος HEB 360 ζυγώματος IPE 270
- Σύνδεση υποστυλώματος ΗΕΒ 360 μηκίδας IPE 140
- Έδραση μεταλλικού υποστυλώματος HEB 360

7.1 ΣΥΝΔΕΣΗ ΖΥΓΩΜΑΤΩΝ

Τα δυσμενέστερα εντατικά μεγέθη που καταπονούν την σύνδεση προέρχονται από τον συνδυασμό σε ΟΚΑ με βασικό μεταβλητό φορτίο το φορτίο χιονιού. 1,35G+1,05Q+1,5·S

 $N_{b,Ed} = -38.64$ [kN] A \pm ONIKH Δ YNAMH $V_{b,Ed} = 1.09$ [kN] Δ IATMHTIKH Δ YNAMH $M_{b,Ed} = -51.09$ [kNm] KAMIITIKH POIIH

Για την σύνδεση χρησιμοποιήθηκαν 10 κοχλίες M16 ποιότητας 10.9 και μετωπική πλάκα διαστάσεων 290mm x 135mm x 20mm ποιότητας S235.

Robot Structural Analysis Professional 2024 Design of fixed beam-to-beam connection EN 1993-1-8:2005/AC:2009

Εικόνα 7.1 Σύνδεση ζυγώματος

RESULTS

BEAM RESISTANCES

COMPRESSION

A _b =	45.94	[cm ²]	Area	EN1993-1-1:[6.2.4]
$N_{cb,Rd} = A_{t}$	ь f yb / γмо			
$N_{cb,Rd} = 1$	263.49	[kN]	Design compressive resistance of the section	EN1993-1-1:[6.2.4]
SHEAR				
A _{vb} =	22.14	[cm ²]	Shear area	EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} = A_v$	_{/b} (f _{yb} / √3)	/ үмо		
V _{cb,Rd} =	351.49	[kN]	Design sectional resistance for shear	EN1993-1-1:[6.2.6.(2)]
V _{b1,Ed} / V _{ct}	_{b,Rd} ≤ 1,0		0.00 < 1.00 verified	(0.00)
BENDING	- PLAST		ENT (WITHOUT BRACKETS)	
W _{plb} =	484.03	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} = V$	V _{plb} f _{yb} / γ _M	10		
$M_{b,pl,Rd} = 1$	33.11 [k	(N*m] P	Plastic resistance of the section for bending (without stiffene	rs) EN1993-1-1:[6.2.5.(2)]
BENDING	ON THE	CONTA	CT SURFACE WITH PLATE OR CONNECTED ELEMENT	
W _{pl} =	484.03	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5]
$M_{cb,Rd} = W$	/ _{pl} f _{yb} / γмо			
$M_{cb,Rd} = 2$	133.11	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
FLANGE	AND WEE	B - COMI	PRESSION	
$M_{cb,Rd} =$	133.11	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
h _f =	260	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]
$F_{c,fb,Rd} = N$	1 _{cb,Rd} / h _f			
$F_{c,fb,Rd} = 5$	512.35	[kN]	Resistance of the compressed flange and web	[6.2.6.7.(1)]

GEOMETRICAL PARAMETERS OF A CONNECTION

EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE

Nr	m	mx	е	ex	р	l _{eff,cp}	l _{eff,nc}	leff,1	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	26	-	32	-	40	164	208	164	208	122	156	122	156
2	26	-	32	-	60	164	145	145	145	120	60	60	60
3	26	-	32	-	60	164	145	145	145	120	60	60	60
4	26	-	32	-	40	164	145	145	145	80	40	40	40
5	26	-	32	-	40	164	145	145	145	122	92	92	92

m	 Bolt distance from the web
m _x	 Bolt distance from the beam flange
е	 Bolt distance from the outer edge
ex	 Bolt distance from the horizontal outer edge
р	– Distance between bolts
l _{eff,cp}	 Effective length for a single bolt row in the circular failure mode
leff,nc	 Effective length for a single bolt row in the non-circular failure mode
leff,1	 Effective length for a single bolt row for mode 1
l _{eff,2}	 Effective length for a single bolt row for mode 2
I _{eff,cp,g}	 Effective length for a group of bolts in the circular failure mode
l _{eff,nc,g}	 Effective length for a group of bolts in the non-circular failure mode
I _{eff,1,g}	 Effective length for a group of bolts for mode 1
l _{eff,2,g}	 Effective length for a group of bolts for mode 2

CONNECTION RESISTANCE FOR COMPRESSION

N _{i.Rd}	= Min	(Ncb.Rd)
i ij,ru	- 101111		,

N _{j,Rd} =	1263.49	[kN]	Connection resistance for compression		[6.2]
N _{b1.Ed} / I	N _{i.Rd} ≤ 1,0		0.03 < 1.00	verified	(0.03)

CONNECTION RESISTANCE FOR BENDING

F _{t,Rd} =	113.04	[kN]	Bolt resistance for tension	[Table 3.4]
B _{p,Rd} =	260.58	[kN]	Punching shear resistance of a bolt	[Table 3.4]
Ft,fc,Rd	– column fla	inge res	istance due to bending	
Ft,wc,Rd	– column we	eb resis	tance due to tension	
Ft,ep,Rd	– resistance	e of the f	front plate due to bending	
Ft,wb,Rd	– resistance	e of the v	web in tension	
F _{t,fc,Rd} =	Min (F _{T,1,fc,Rc}	і, F _{T,2,fc}	Rd , F _{T,3,fc,Rd})	[6.2.6.4] , [Tab.6.2]
F _{t,wc,Rd} =	= ω b _{eff,t,wc} t _{wc}	f _{yc} / γмо		[6.2.6.3.(1)]
$F_{t,ep,Rd} = Min (F_{T,1,ep,Rd}, F_{T,2,ep,Rd}, F_{T,3,ep,Rd})$ $F_{t,wh,Rd} = b_{eff,t,wh} t_{wh} t_{wh} f_{vh} / \gamma_{M0}$				[6.2.6.5] , [Tab.6.2] [6.2.6.8.(1)]

RESISTANCE OF THE BOLT ROW NO. 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Component
Ft1,Rd = Min (Ft1,Rd,comp)	226.08	Bolt row resistance
$F_{t,ep,Rd(1)} = 226.08$	226.08	Front plate - tension
$F_{t,wb,Rd(1)} = 297.00$	297.00	Beam web - tension
$B_{p,Rd} = 521.15$	521.15	Bolts due to shear punching
F _{c,fb,Rd} = 512.35	512.35	Beam flange - compression

Ft1,Rd,comp - Formula	Ft1,Rd,comp	Component
-----------------------	-------------	-----------

RESISTANCE OF THE BOLT ROW NO. 2

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Component
F _{t2,Rd} = Min (F _{t2,Rd,comp})	165.86	Bolt row resistance
$F_{t,ep,Rd(2)} = 226.08$	226.08	Front plate - tension
$F_{t,wb,Rd(2)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 521.15	521.15	Bolts due to shear punching
F _{c,fb,Rd} - ∑1 ¹ F _{tj,Rd} = 512.35 - 226.08	286.27	Beam flange - compression
$F_{t,ep,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 424.38 - 226.08$	198.30	Front plate - tension - group
$F_{t,wb,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 391.94 - 226.08$	165.86	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 3

Ft3,Rd,comp - Formula	Ft3,Rd,comp	Component
F _{t3,Rd} = Min (F _{t3,Rd,comp})	51.94	Bolt row resistance
$F_{t,ep,Rd(3)} = 226.08$	226.08	Front plate - tension
$F_{t,wb,Rd(3)} = 262.81$	262.81	Beam web - tension
$B_{p,Rd} = 521.15$	521.15	Bolts due to shear punching
F _{c,fb,Rd} - ∑1 ² F _{tj,Rd} = 512.35 - 391.94	120.41	Beam flange - compression
$F_{t,ep,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 347.35 - 165.86	181.49	Front plate - tension - group
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 217.80 - 165.86$	51.94	Beam web - tension - group
$F_{t,ep,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 598.06 - 391.94$	206.12	Front plate - tension - group
$F_{t,wb,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd}$ = 500.84 - 391.94	108.90	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 4

Ft4,Rd,comp - Formula	Ft4,Rd,comp	Component
F _{t4,Rd} = Min (F _{t4,Rd,comp})	68.47	Bolt row resistance
$F_{t,ep,Rd(4)} = 226.08$	226.08	Front plate - tension
$F_{t,wb,Rd(4)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 521.15	521.15	Bolts due to shear punching
F _{c,fb,Rd} - ∑1 ³ F _{tj,Rd} = 512.35 - 443.88	68.47	Beam flange - compression
F _{t,ep,Rd(4 + 3)} - ∑ ₃ ³ F _{tj,Rd} = 331.30 - 51.94	279.36	Front plate - tension - group
$F_{t,wb,Rd(4+3)}$ - $\sum_{3^{3}} F_{tj,Rd}$ = 181.50 - 51.94	129.56	Beam web - tension - group
$F_{t,ep,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{tj,Rd} = 504.97 - 217.80$	287.17	Front plate - tension - group
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 290.40 - 217.80$	72.60	Beam web - tension - group
$F_{t,ep,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{tj,Rd} = 755.68 - 443.88$	311.80	Front plate - tension - group
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 573.44 - 443.88$	129.56	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Component
F _{t5,Rd} = Min (F _{t5,Rd,comp})	0.00	Bolt row resistance
$F_{t,ep,Rd(5)} = 226.08$	226.08	Front plate - tension
$F_{t,wb,Rd(5)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 521.15	521.15	Bolts due to shear punching
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 512.35 - 512.35$	0.00	Beam flange - compression
$F_{t,ep,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 357.31 - 68.47	288.83	Front plate - tension - group
$F_{t,wb,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd}$ = 240.30 - 68.47	171.83	Beam web - tension - group
$F_{t,ep,Rd(5 + 4 + 3)} - \sum_{4^{3}} F_{tj,Rd} = 530.99 - 120.41$	410.57	Front plate - tension - group
$F_{t,wb,Rd(5+4+3)} - \sum_{4^{3}} F_{tj,Rd} = 349.20 - 120.41$	228.79	Beam web - tension - group
$F_{t,ep,Rd(5 + 4 + 3 + 2)} - \sum_{4}^{2} F_{tj,Rd} = 704.66 - 286.27$	418.39	Front plate - tension - group
$F_{t,wb,Rd(5 + 4 + 3 + 2)} - \sum_{4}^{2} F_{tj,Rd} = 458.10 - 286.27$	171.83	Beam web - tension - group

Ft5,Rd,comp - Formula	Ft5,Rd,comp	Component
$F_{t,ep,Rd(5 + 4 + 3 + 2 + 1)} - \sum_{4}^{1} F_{tj,Rd} = 955.37 - 512.35$	443.01	Front plate - tension - group
$F_{t,wb,Rd(5 + 4 + 3 + 2 + 1)} - \sum_{4} F_{tj,Rd} = 741.15 - 512.35$	228.79	Beam web - tension - group

SUMMARY TABLE OF FORCES

Nr	hj	F _{tj,Rd}	Ft,fc,Rd	F _{t,wc,Rd}	F _{t,ep,Rd}	$F_{t,wb,Rd}$	F _{t,Rd}	B _{p,Rd}
1	237	226.08	-	-	226.08	297.00	226.08	521.15
2	197	165.86	-	-	226.08	262.81	226.08	521.15
3	117	51.94	-	-	226.08	262.81	226.08	521.15
4	77	68.47	-	-	226.08	262.81	226.08	521.15
5	37	-	-	-	226.08	262.81	226.08	521.15

CONNECTION RESISTANCE FOR BENDING Mj,Rd

Mj,Rd = ∑ ł	nj Ftj,Rd			
M _{j,Rd} =	97.64	[kN*m]	Connection resistance for bending	[6.2

$M_{b1,Ed} / M_{j,Rd} \le 1,0$	0.52 < 1.00	verified	(0.52)
--------------------------------	-------------	----------	--------

CONNECTION RESISTANCE FOR SHEAR

α _v = 0.60		Coefficient for calculation of F _{v,Rd}	[Table 3.4]
F _{v,Rd} = 96.51	[kN]	Shear resistance of a single bolt	[Table 3.4]
$F_{t,Rd,max} = 113.04$	[kN]	Tensile resistance of a single bolt	[Table 3.4]
F _{b,Rd,int} = 113.07	[kN]	Bearing resistance of an intermediate bolt	[Table 3.4]
F _{b,Rd,ext} = 163.23	[kN]	Bearing resistance of an outermost bolt	[Table 3.4]

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	Ftj,Rd,M	Ftj,Ed,M	F _{tj,Ed}	F vj,Rd
1	226.08	-7.73	226.08	118.29	110.56	125.59
2	226.08	-7.73	165.86	86.79	79.06	144.81
3	226.08	-7.73	51.94	27.18	19.45	181.16
4	226.08	-7.73	68.47	35.83	28.10	175.88
5	226.08	-7.73	0.00	0.00	-7.73	193.02

Ftj,Rd,N	 Bolt row resistance for simple tension
Ftj,Ed,N	 Force due to axial force in a bolt row
Ftj,Rd,M	 Bolt row resistance for simple bending
Ftj,Ed,M	 Force due to moment in a bolt row
F _{tj,Ed}	 Maximum tensile force in a bolt row
F _{vi,Rd}	 Reduced bolt row resistance

$$\begin{split} &F_{tj,Ed,N} = N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd} \\ &F_{tj,Ed,M} = M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd} \\ &F_{tj,Ed} = F_{tj,Ed,N} + \; F_{tj,Ed,M} \\ &F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; / \; (1 - F_{tj,Ed} \; / \; (1.4 \; n_h \; F_{t,Rd,max}) \;), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}) \end{split}$$

$V_{j,Rd} = n_h \sum_{1}^{n} F_{vj,Rd}$ $V_{j,Rd} = 820.46$	[kN]	Connection resistance for shear		[Table 3.4] [Table 3.4]
V _{b1.Ed} / V _{i.Rd} ≤ 1,0		0.00 < 1.00	verified	(0.00)

WELD RESISTANCE

A _w =	59.42	[cm ²]	Area of all welds	[4.5.3.2(2)]
A _{wy} =	37.34	[cm ²]	Area of horizontal welds	[4.5.3.2(2)]
A _{wz} =	22.08	[cm ²]	Area of vertical welds	[4.5.3.2(2)]
I _{wy} =	7439.16	[cm ⁴]	Moment of inertia of the weld arrangement with respect to the hor.	axis [4.5.3.2(5)]
$\sigma_{\perp max} = \tau_{\perp max} =$	-72.45	[MPa]	Normal stress in a weld	[4.5.3.2(6)]
$\sigma_{\perp}=\tau_{\perp}=$	-58.21	[MPa]	Stress in a vertical weld	[4.5.3.2(5)]
τ _{II} =	0.49	[MPa]	Tangent stress	[4.5.3.2(5)]
βw =	0.80		Correlation coefficient	[4.5.3.2(7)]

$\sqrt{[\sigma_{\perp max}^2 + 3^*(\tau_{\perp max}^2)]} \le f_u/(\beta_w^*\gamma_{M2})$	144.91 < 360.00	verified	(0.40)
$\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{II}^2)]} \le f_u/(\beta_w^*\gamma_{M2})$	116.42 < 360.00	verified	(0.32)
σ⊥ ≤ 0.9*fu/γ _{M2}	72.45 < 259.20	verified	(0.28)

CONNECTION STIFFNESS

t _{wash} =	4	[mm]	Washer thickness	[6.2.6.3.(2)]
h _{head} =	12	[mm]	Bolt head height	[6.2.6.3.(2)]
h _{nut} =	16	[mm]	Bolt nut height	[6.2.6.3.(2)]
L _b =	52	[mm]	Bolt length	[6.2.6.3.(2)]
k ₁₀ =	5	[mm]	Stiffness coefficient of bolts	[6.3.2.(1)]

STIFFNESSES OF BOLT ROWS

Nr	hj	k ₃	k 4	k5	k _{eff,j}	k _{eff,j} h _j	k _{eff,j} h _j ²	
					Sum	24.16	431.24	
1	237	x	∞	50	4	9.56	226.55	
2	197	x	x	24	3	6.81	134.12	
3	117	x	x	24	3	4.04	47.33	
4	77	∞	∞	16	3	2.33	17.98	
5	37	∞	∞	38	4	1.42	5.27	

$k_{eff,j} = 1 / (\sum_{3^5} (1 / k_{i,j}))$	[6.3.3.1.(2)]
$z_{eq} = \sum_{j} k_{eff,j} h_j^2 / \sum_{j} k_{eff,j} h_j$ $z_{eq} = 179 \text{ [mm]}$ Equivalent force arm	[6.3.3.1.(3)]
$k_{eq} = \sum_{j} k_{eff,j} h_j / z_{eq}$ $k_{eq} = 14$ [mm] Equivalent stiffness coefficient of a bolt arrangement	[6.3.3.1.(1)]
S _{j,ini} = E z _{eq} ² k _{eq} S _{j,ini} = 90561 . 18 [kN*m] Initial rotational stiffness	[6.3.1.(4)] [6.3.1.(4)]
μ = 1.00 Stiffness coefficient of a connection	[6.3.1.(6)]
S _j = S _{j,ini} / μ S _j = 90561.18 [kN*m] Final rotational stiffness	[6.3.1.(4)] [6.3.1.(4)]
Connection classification due to stiffness.	
S _{j,rig} = 12899.53 [kN*m] Stiffness of a rigid connection	[5.2.2.5]
S _{j,pin} = 806.22 [kN*m] Stiffness of a pinned connection	[5.2.2.5]

 $S_{j,ini} \geq S_{j,rig} \; RIGID$

WEAKEST COMPONENT:

BEAM FLANGE AND WEB - COMPRESSION

7.2 ΣΥΝΔΕΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ – ΖΥΓΩΜΑΤΟΣ

Τα δυσμενέστερα εντατικά μεγέθη που καταπονούν την σύνδεση προέρχονται από τον συνδυασμό σε ΟΚΑ με βασικό μεταβλητό φορτίο το φορτίο χιονιού.

1,35G+1,05Q+1,5·S

Τα εντατικά μεγέθη σχεδιασμού των συνδεόμενων μελών είναι:

- για το ζύγωμα: M_{b,Ed}=121.25 [kNm], V_{b,Ed}=55.08 [kN], N_{b,Ed}=-38.64 [kN]
- για το υποστύλωμα: M_{c,Ed}=120.18 [kNm], V_{c,Ed}=43.62 [kN], N_{c,Ed}=-56.35 [kN]

Για την σύνδεση χρησιμοποιήθηκαν 8 κοχλίες M20 ποιότητας 8.8 και μετωπική πλάκα διαστάσεων 455mm x 135mm x 20mm ποιότητας S275. Πρέπει να σημειωθεί ότι στη συγκεκριμένη περίπτωση τοποθετήθηκε έλασμα για την ενίσχυση του κόμβου όπως φαίνεται παρακάτω (Εικόνα 7.2).

Εικόνα 7.2 Σύνδεση υποστυλώματος-ζυγώματος

RESULTS

BEAM RESISTANCES

COMPRESSION

A _b =	45.94	[cm ²]	Area	EN1993-1-1:[6.2.4]
N _{cb,Rd} =	A _b f _{yb} / γ _{M0}			
N _{cb,Rd} =	1263.49	[kN]	Design compressive resistance of the section	EN1993-1-1:[6.2.4]
SHEAR	,			
A _{vb} =	35.64	[cm ²]	Shear area	EN1993-1-1 ⁻ [6 2 6 (3)]
Vcb Rd =	Avb (fvb / $\sqrt{3}$)	/ vmo		
V _{cb,Rd} =	565.83	[kN]	Design sectional resistance for shear	EN1993-1-1:[6.2.6.(2)]
V _{b1,Ed} / '	V _{cb,Rd} ≤ 1,0		0.10 < 1.00 verified	(0.10)
BENDI	NG - PLAST		ENT (WITHOUT BRACKETS)	
$W_{plb} =$	484.03	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
M _{b,pl,Rd} :	= W _{plb} f _{yb} / γ _M	0		
M _{b,pl,Rd} :	=133.11 [k	(N*m] P	lastic resistance of the section for bending (without stiffeners)	EN1993-1-1:[6.2.5.(2)]
		CONTA		
VV _{pl} =	1017.85	[cm]	Plastic section modulus	EN 1993-1-1.[0.2.5]
Mcb,Rd =	VV pl Tyb / γM0			
Mcb,Rd =	2/9.91	[kN^m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
FLANG	E AND WEE	B - COMF	PRESSION	
M _{cb,Rd} =	: 279.91	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
h _f =	385	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]
F _{c,fb,Rd} =	= M _{cb,Rd} / h _f	-	-	
F _{c,fb,Rd} =	= 727.19	[kN]	Resistance of the compressed flange and web	[6.2.6.7.(1)]

WEB OR BRACKET FLANGE - COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE

Bearing:

β =	-1.00	[deg]	Angle between the front plate and the beam	
γ =	-1.00	[deg]	Inclination angle of the bracket plate	
b _{eff,c,wb} =	252	[mm]	Effective width of the web for compression	[6.2.6.2.(1)]
A _{vb} =	22.14	[cm ²]	Shear area	EN1993-1-1:[6.2.6.(3)]
ω =	0.76		Reduction factor for interaction with shear	[6.2.6.2.(1)]
$\sigma_{\rm com,Ed} = 2$	238.36	[MPa]	Maximum compressive stress in web	[6.2.6.2.(2)]
k _{wc} =	0.83		Reduction factor conditioned by compressive stresses	[6.2.6.2.(2)]
F _{c,wb,Rd1} =	iω k _{wc} b	_{eff,c,wb} t _w	_{vb} f _{yb} / γ_{M0}] cos(γ) / sin(γ - β)	
F _{c,wb,Rd1} =	856.65	5 [kN	N] Beam web resistance	[6.2.6.2.(1)]
Buckling:				
d _{wb} =	220	[mm	n] Height of compressed web	[6.2.6.2.(1)]
$\lambda_p =$	1.20		Plate slenderness of an element	[6.2.6.2.(1)]
ρ=	0.69		Reduction factor for element buckling	[6.2.6.2.(1)]
F _{c,wb,Rd2} =	:[ω k _{wc} ρ	b _{eff,c,wb}	$t_{wb} f_{yb} / \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
F _{c,wb,Rd2} =	594.52	2 [kN	N] Beam web resistance	[6.2.6.2.(1)]

Final resistance: $F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2})$ F_{c,wb,Rd,low} = 594.52 [kN] Beam web resistance

COLUMN RESISTANCES

WEB PA	NEL - SH	IEAR		
$M_{b1,Ed} =$	121.25	[kN*m] Bending moment (right beam)	[5.3.(3)]
$M_{b2,Ed} =$	0.00	[kN*m] Bending moment (left beam)	[5.3.(3)]
$V_{c1,Ed} =$	43.62	[kN]	Shear force (lower column)	[5.3.(3)]
$V_{c2,Ed} =$	0.00	[kN]	Shear force (upper column)	[5.3.(3)]
z =	318	[mm]	Lever arm	[6.2.5]
$V_{wp,Ed} = ($	Mb1,Ed - N	1 _{b2,Ed}) / z	- (V _{c1,Ed} - V _{c2,Ed}) / 2	
$V_{wp,Ed}$ =	360.03	[kN]	Shear force acting on the web panel	[5.3.(3)]
A _{vs} =	60.60	[cm ²]	Shear area of the column web	EN1993-1-1:[6.2.6.(3)]
A _{vc} =	60.60	[cm ²]	Shear area	EN1993-1-1:[6.2.6.(3)]
d _s =	287	[mm]	Distance between the centroids of stiffeners	[6.2.6.1.(4)]
$M_{pl,fc,Rd} =$	10.44	[kN*m]	Plastic resistance of the column flange for bending	[6.2.6.1.(4)]
M _{pl,stu,Rd} =	= 1.32	[kN*m]	Plastic resistance of the upper transverse stiffener for bending	[6.2.6.1.(4)]
M _{pl,stl,Rd} =	1.32	[kN*m]	Plastic resistance of the lower transverse stiffener for bending	[6.2.6.1.(4)]
$V_{wp,Rd} = 0$	0.9 (A _{vs} *f	_{y,wc}) / (√	$3 \gamma_{M0}$) + Min(4 M _{pl,fc,Rd} / d _s , (2 M _{pl,fc,Rd} + M _{pl,stu,Rd} + M _{pl,stl,Rd}) / d _s)	
V _{wp,Rd} =	947.84	[kN]	Resistance of the column web panel for shear	[6.2.6.1]
V _{wp,Ed} / V	/wp,Rd ≤ 1,0	C	0.38 < 1.00 verified	(0.38)

WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE

RAS	rina
	ar in ior.

t _{wc} = 12 [mm] Eff	12 [mm] Effective thickness of the column web[6.2.6.									
$b_{eff,c,wc} = 349$ [mm] Eff	9 [mm] Effective width of the web for compression [6.2.6.2									
$A_{vc} = 60.60 \text{ [cm2] Sh}$	[cm ²] Shear area EN1993-1-1:[6.2.6.(3									
= 0.77 Reduction factor for interaction with shear [6.2.6.2.(1)										
$\sigma_{\text{com,Ed}} = 39.43$ [MPa] Maximum compressive stress in web [6.2.6.2.(2)]										
kwc = 1.00 Re	duction factor conditioned by compressive stresses	[6.2.6.2.(2)]								
$A_s = 18.28 \text{ [cm2] Are}$	ea of the web stiffener	EN1993-1-1:[6.2.4]								
$F_{c,wc,Rd1} = \omega k_{wc} b_{eff,c,wc} t_{wc} f_{eff,c,wc}$	yc / γмо + As fys / γмο									
$F_{c,wc,Rd1} = 1429.42$ [kN]	Column web resistance	[6.2.6.2.(1)]								
Buckling:										
d _{wc} = 261 [mm]	Height of compressed web	[6.2.6.2.(1)]								
λ _p = 0.81	Plate slenderness of an element	[6.2.6.2.(1)]								
ρ = 0.93	Reduction factor for element buckling	[6.2.6.2.(1)]								
λ _s = 2.95	Stiffener slenderness	EN1993-1-1:[6.3.1.2]								
χs = 1.00	Buckling coefficient of the stiffener	EN1993-1-1:[6.3.1.2]								
$F_{c,wc,Rd2} = \omega k_{wc} \rho b_{eff,c,wc} t_{wc}$	c f _{yc} / γ _{M1} + A _s χ _s f _{ys} / γ _{M1}									
$F_{c,wc,Rd2} = 1361.56$ [kN]	Column web resistance	[6.2.6.2.(1)]								
Final resistance:										
F _{c,wc,Rd,low} = Min (F _{c,wc,Rd1} ,	F _{c,wc,Rd2})									
F _{c,wc,Rd} = 1361.56 [kN]	Column web resistance	[6.2.6.2.(1)]								

WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM TOP FLANGE

Bearing:

[6.2.6.2.(1)]

[6.2.6.2.(1)]

two = 12	[mm] Effe	ctive thickness of the column web	[6 2 6 2 (6)]								
b " - 326		ctive width of the web for compression	[0.2.0.2.(0)]								
$D_{eff,c,wc} = -52.0 \text{ [mm] Energy width of the web for compression} \qquad [6.2.6.2.(1)]$ $A_{vc} = -60.60 \text{ [cm}^2 \text{] Shear area} \qquad \text{EN1993-1-1/6.2.6.2.(1)]}$											
$A_{vc} = 60.60$ [cm ²] Shear area EN1993-1-1:[6.2.6.(3)]											
$\omega = 0.79$	$\omega = 0.79$ Reduction factor for interaction with shear [6.2.6.2.(1)]										
$\sigma_{\text{com,Ed}}$ = 39.43	$\sigma_{\text{com,Ed}} = 39.43$ [MPa] Maximum compressive stress in web [6.2.6.2.(2)]										
k _{wc} = 1.00	Red	uction factor conditioned by compressive stresses	[6.2.6.2.(2)]								
As = 18.28	[cm ²] Area	a of the web stiffener	EN1993-1-1:[6.2.4]								
$F_{c,wc,Rd1} = \omega k_{wc} k$	Deff,c,wc twc fyc	/ γ _{M0} + A _s f _{ys} / γ _{M0}									
$F_{c,wc,Rd1} = 1392$.	13 [kN]	Column web resistance	[6.2.6.2.(1)]								
Buckling:											
d _{wc} = 26	1 [mm]	Height of compressed web	[6.2.6.2.(1)]								
λ _p = 0.7	9	Plate slenderness of an element	[6.2.6.2.(1)]								
ρ = 0.9	5	Reduction factor for element buckling	[6.2.6.2.(1)]								
λs = 2.9	5	Stiffener slenderness	EN1993-1-1:[6.3.1.2]								
χs = 1.0	0	Buckling coefficient of the stiffener	EN1993-1-1:[6.3.1.2]								
$F_{c,wc,Rd2} = \omega k_{wc} \beta$	b b _{eff,c,wc} t _{wc} f	_{yc} / γ _{M1} + A _s χ _s f _{ys} / γ _{M1}									
$F_{c,wc,Rd2} = 1345$.	59 [kN]	Column web resistance	[6.2.6.2.(1)]								
Final resistance:											
$F_{c,wc,Rd,upp} = Min$	(Fc,wc,Rd1 , Fc	z,wc,Rd2)									
$F_{c,wc,Rd,upp} = 1345.59$ [kN] Column web resistance [6.2.6.2.(1)]											

GEOMETRICAL PARAMETERS OF A CONNECTION

EFFECTIVE LENGTHS AND PARAMETERS - COLUMN FLANGE

Nr	m	mx	е	ex	р	leff,cp	l _{eff,nc}	leff,1	leff,2	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	7	-	115	-	75	45	57	45	57	97	9	9	9
2	7	-	115	-	75	45	172	45	172	150	75	75	75
3	7	-	115	-	110	45	172	45	172	220	110	110	110
4	7	-	115	-	145	45	57	45	57	167	44	44	44

EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE

Nr	m	mx	е	ex	р	I _{eff,cp}	I _{eff,nc}	I _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	l _{eff,1,g}	I _{eff,2,g}
1	26	-	32	-	75	164	191	164	191	157	156	156	156
2	26	-	32	-	75	164	145	145	145	150	75	75	75
3	26	-	32	-	110	164	145	145	145	220	110	110	110
4	26	-	32	-	145	164	145	145	145	227	145	145	145

- m Bolt distance from the web
- m_x Bolt distance from the beam flange
- e Bolt distance from the outer edge
- ex Bolt distance from the horizontal outer edge
- p Distance between bolts
- l_{eff,cp} Effective length for a single bolt row in the circular failure mode
- $I_{eff,nc}$ Effective length for a single bolt row in the non-circular failure mode
- l_{eff,1} Effective length for a single bolt row for mode 1
- l_{eff,2} Effective length for a single bolt row for mode 2
- $\mathsf{I}_{\mathsf{eff},\mathsf{cp},\mathsf{g}}$ Effective length for a group of bolts in the circular failure mode
- leff,nc,g Effective length for a group of bolts in the non-circular failure mode
- I_{eff,1,g} Effective length for a group of bolts for mode 1
- I_{eff,2,g} Effective length for a group of bolts for mode 2

CONNECTION RESISTANCE FOR COMPRESSION

N _{j,Rd} = Min (N _{cb,Rd} 2 F _{c,wb,Rd,low} , 2 F _{c,wc,Rd,low} , 2 F _{c,wc,Rd,upp})						
N _{j,Rd} = 11	89.03	[kN]	Connection resistance for compression		[6.2]	
N _{b1,Ed} / N _{j,Rd}	≤ 1,0		0.03 < 1.00	verified	(0.03)	

CONNECTION RESISTANCE FOR BENDING

F _{t,Rd} =	141.12	[kN]	Bolt resistance for tension	[Table 3.4]			
B _{p,Rd} =	389.05	[kN]	Punching shear resistance of a bolt	[Table 3.4]			
Ft,fc,Rd	– column fl	ange res	sistance due to bending				
Ft,wc,Rd	– column w	veb resis	stance due to tension				
Ft,ep,Rd	– resistanc	e of the	front plate due to bending				
Ft,wb,Rd	– resistanc	e of the	web in tension				
F _{t,fc,Rd} =	= Min (F _{T,1,fc,F}	αd , FT,2,fα	c,Rd , FT,3,fc,Rd)	[6.2.6.4] , [Tab.6.2]			
F _{t,wc,Rd} =	= ω b _{eff,t,wc} t _w	c fyc / γΜα)	[6.2.6.3.(1)]			
F _{t,ep,Rd} =	= Min (F _{T,1,ep}	,Rd , FT,2	,ep,Rd , FT,3,ep,Rd)	[6.2.6.5] , [Tab.6.2]			
F _{t,wb,Rd} :	$t_{,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / \gamma_{M0}$ [6.2.6.8.(1)]						

RESISTANCE OF THE BOLT ROW NO. 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Component
F _{t1,Rd} = Min (F _{t1,Rd,comp})	153.57	Bolt row resistance
$F_{t,fc,Rd(1)} = 282.24$	282.24	Column flange - tension
F _{t,wc,Rd(1)} = 153.57	153.57	Column web - tension
$F_{t,ep,Rd(1)} = 282.24$	282.24	Front plate - tension
F _{t,wb,Rd(1)} = 297.00	297.00	Beam web - tension
B _{p,Rd} = 778.11	778.11	Bolts due to shear punching
$V_{wp,Rd}/\beta = 947.84$	947.84	Web panel - shear
F _{c,wc,Rd} = 1361.56	1361.56	Column web - compression
F _{c,fb,Rd} = 727.19	727.19	Beam flange - compression
F _{c,wb,Rd} = 594.52	594.52	Beam web - compression

RESISTANCE OF THE BOLT ROW NO. 2

Ft2,Rd,comp - Formula	Ft2,Rd,comp	Component
F _{t2,Rd} = Min (F _{t2,Rd,comp})	128.16	Bolt row resistance
$F_{t,fc,Rd(2)} = 282.24$	282.24	Column flange - tension
$F_{t,wc,Rd(2)} = 153.57$	153.57	Column web - tension
F _{t,ep,Rd(2)} = 282.24	282.24	Front plate - tension
$F_{t,wb,Rd(2)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 778.11	778.11	Bolts due to shear punching
V _{wp,Rd} /β - ∑1 ¹ F _{ti,Rd} = 947.84 - 153.57	794.26	Web panel - shear
F _{c,wc,Rd} - ∑1 ¹ F _{tj,Rd} = 1361.56 - 153.57	1207.99	Column web - compression
F _{c,fb,Rd} - ∑1 ¹ F _{tj,Rd} = 727.19 - 153.57	573.61	Beam flange - compression
$F_{c,wb,Rd} - \sum_{1} F_{tj,Rd} = 594.52 - 153.57$	440.94	Beam web - compression
$F_{t,fc,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 564.48 - 153.57$	410.91	Column flange - tension - group
$F_{t,wc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 281.73 - 153.57$	128.16	Column web - tension - group
$F_{t,ep,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 530.26 - 153.57$	376.68	Front plate - tension - group

Ft2,Rd,comp - Formula	Ft2,Rd,comp	Component	
$F_{t,wb,Rd(2 + 1)} - \sum_{1}^{1} F_{tj,Rd} = 419.01 - 153.57$	265.44	Beam web - tension - group	

RESISTANCE OF THE BOLT ROW NO. 3

Ft3,Rd,comp - Formula	Ft3,Rd,comp	Component
F _{t3,Rd} = Min (F _{t3,Rd,comp})	153.57	Bolt row resistance
F _{t,fc,Rd(3)} = 282.24	282.24	Column flange - tension
$F_{t,wc,Rd(3)} = 153.57$	153.57	Column web - tension
$F_{t,ep,Rd(3)} = 282.24$	282.24	Front plate - tension
$F_{t,wb,Rd(3)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 778.11	778.11	Bolts due to shear punching
V _{wp,Rd} /β - ∑1 ² F _{ti,Rd} = 947.84 - 281.73	666.10	Web panel - shear
F _{c,wc,Rd} - ∑1 ² F _{tj,Rd} = 1361.56 - 281.73	1079.83	Column web - compression
F _{c,fb,Rd} - ∑1 ² F _{tj,Rd} = 727.19 - 281.73	445.46	Beam flange - compression
$F_{c,wb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 594.52 - 281.73$	312.78	Beam web - compression
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 564.48 - 128.16$	436.32	Column flange - tension - group
$F_{t,wc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 583.13 - 128.16$	454.97	Column web - tension - group
$F_{t,fc,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 846.72 - 281.73$	564.99	Column flange - tension - group
$F_{t,wc,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 605.47 - 281.73$	323.74	Column web - tension - group
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 487.17 - 128.16$	359.01	Front plate - tension - group
$F_{t,wb,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 335.78 - 128.16	207.62	Beam web - tension - group
$F_{t,ep,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 790.28 - 281.73$	508.55	Front plate - tension - group
$F_{t,wb,Rd(3+2+1)} - \sum_{2}^{1} F_{tj,Rd} = 618.66 - 281.73$	336.93	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Component
Ft4,Rd = Min (Ft4,Rd,comp)	153.57	Bolt row resistance
$F_{t,fc,Rd(4)} = 282.24$	282.24	Column flange - tension
$F_{t,wc,Rd(4)} = 153.57$	153.57	Column web - tension
$F_{t,ep,Rd(4)} = 282.24$	282.24	Front plate - tension
$F_{t,wb,Rd(4)} = 262.81$	262.81	Beam web - tension
B _{p,Rd} = 778.11	778.11	Bolts due to shear punching
V _{wp,Rd} /β - ∑1 ³ F _{ti,Rd} = 947.84 - 435.31	512.53	Web panel - shear
F _{c,wc,Rd} - ∑ ₁ ³ F _{tj,Rd} = 1361.56 - 435.31	926.25	Column web - compression
F _{c,fb,Rd} - ∑1 ³ F _{tj,Rd} = 727.19 - 435.31	291.88	Beam flange - compression
F _{c,wb,Rd} - ∑ ₁ ³ F _{tj,Rd} = 594.52 - 435.31	159.21	Beam web - compression
$F_{t,fc,Rd(4+3)} - \sum_{3}{}^{3}F_{tj,Rd} = 564.48 - 153.57$	410.91	Column flange - tension - group
$F_{t,wc,Rd(4+3)} - \sum_{3^{3}} F_{tj,Rd} = 496.37 - 153.57$	342.80	Column web - tension - group
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 846.72 - 281.73$	564.99	Column flange - tension - group
$F_{t,wc,Rd(4 + 3 + 2)} - \sum_{3}^{2} F_{tj,Rd} = 691.94 - 281.73$	410.20	Column web - tension - group
$F_{t,fc,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd}$ = 1128.96 - 435.31	693.65	Column flange - tension - group
$F_{t,wc,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{tj,Rd} = 711.71 - 435.31$	276.41	Column web - tension - group
$F_{t,ep,Rd(4+3)} - \sum_{3}{}^{3}F_{tj,Rd} = 552.84 - 153.57$	399.27	Front plate - tension - group
$F_{t,wb,Rd(4+3)}$ - $\sum_{3^{3}} F_{tj,Rd}$ = 462.64 - 153.57	309.07	Beam web - tension - group
F _{t,ep,Rd(4 + 3 + 2)} - ∑ ₃ ² F _{tj,Rd} = 779.99 - 281.73	498.25	Front plate - tension - group
$F_{t,wb,Rd(4 + 3 + 2)} - \sum_{3^2} F_{tj,Rd} = 598.77 - 281.73$	317.03	Beam web - tension - group
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1083.10 - 435.31$	647.79	Front plate - tension - group
$F_{t,wb,Rd(4 + 3 + 2 + 1)} - \sum_{3}^{1} F_{tj,Rd} = 881.65 - 435.31$	446.35	Beam web - tension - group

SUMMARY TABLE OF FORCES

Nr	hj	F _{tj,Rd}	Ft,fc,Rd	Ft,wc,Rd	F _{t,ep,Rd}	Ft,wb,Rd	F _{t,Rd}	B _{p,Rd}
1	355	153.57	282.24	153.57	282.24	297.00	282.24	778.11

Nr	hj	F _{tj,Rd}	Ft,fc,Rd	Ft,wc,Rd	F _{t,ep,Rd}	Ft,wb,Rd	Ft,Rd	B _{p,Rd}
2	280	128.16	282.24	153.57	282.24	262.81	282.24	778.11
3	205	153.57	282.24	153.57	282.24	262.81	282.24	778.11
4	60	153.57	282.24	153.57	282.24	262.81	282.24	778.11

CONNECTION RESISTANCE FOR BENDING Mj,Rd

Mj,Rd = ∑ hj Ftj,Rd

M _{j,Rd} =	131.13	[kN*m]	Connection resistance for bending		[6.2]
M _{b1,Ed} / N	M _{j,Rd} ≤ 1,0		0.92 < 1.00	verified	(0.92)

CONNECTION RESISTANCE FOR SHEAR

α _v =	0.60		Coefficient for calculation of F _{v,Rd}	[Table 3.4]
F _{v,Rd} =	94.08	[kN]	Shear resistance of a single bolt	[Table 3.4]
F _{t,Rd,max} =	:141.12	[kN]	Tensile resistance of a single bolt	[Table 3.4]
F _{b,Rd,int} =	304.91	[kN]	Bearing resistance of an intermediate bolt	[Table 3.4]
$F_{b,Rd,ext} =$	263.86	[kN]	Bearing resistance of an outermost bolt	[Table 3.4]

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F tj,Rd,M	F tj,Ed,M	F _{tj,Ed}	F vj,Rd
1	282.24	-9.66	153.57	142.01	132.35	125.14
2	282.24	-9.66	128.16	118.50	108.84	136.33
3	282.24	-9.66	153.57	142.01	132.35	125.14
4	282.24	-9.66	153.57	142.01	132.35	125.14

Ftj,Rd,N	 Bolt row resistance for simple tension
F _{tj,Ed,N}	 Force due to axial force in a bolt row
Ftj,Rd,M	 Bolt row resistance for simple bending
F _{tj,Ed,M}	 Force due to moment in a bolt row
F _{tj,Ed}	 Maximum tensile force in a bolt row
F _{vj,Rd}	 Reduced bolt row resistance

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd} \\ F_{tj,Ed} &= F_{tj,Ed,N} \; + \; F_{tj,Ed,M} \\ F_{vj,Rd} &= Min \; (n_h \; F_{v,Ed} \; / \; (1 - F_{tj,Ed} \; / \; (1.4 \; n_h \; F_{t,Rd,max}) \;), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}) \end{split}$$

$V_{j,Rd} = n_h \sum_{1}^{n} F_{vj,Rd}$ $V_{j,Rd} = 511.74$	[kN]	Connection resistance for shear		[Table 3.4] [Table 3.4]
$V_{b1,Ed} / V_{j,Rd} \leq 1,0$		0.11 < 1.00	verified	(0.11)

WELD RESISTANCE

A _w =	101.	98 [[cm ²]	Area of all welds	[4.5.3.2(2)]
A _{wy} =	69.	68 [[cm ²]	Area of horizontal welds	[4.5.3.2(2)]
A _{wz} =	32.	30 [[cm ²]	Area of vertical welds	[4.5.3.2(2)]
I _{wy} =	22546.	92 [[cm ⁴]	Moment of inertia of the weld arrangement with respect to the hor.	axis [4.5.3.2(5)]
σ⊥max=τ⊥max =	= 82.	87 [MPa]	Normal stress in a weld	[4.5.3.2(6)]
$\sigma_{\perp}=\tau_{\perp}=$	71.	04 [MPa]	Stress in a vertical weld	[4.5.3.2(5)]
τιι =	17.	05 [MPa]	Tangent stress	[4.5.3.2(5)]
β _w =	0.	85		Correlation coefficient	[4.5.3.2(7)]

$\sqrt{[\sigma_{\perp max}^2 + 3^*(\tau_{\perp max}^2)]} \le f_u/(\beta_w^*\gamma_{M2})$	165.73 < 404.71	verified	(0.41)
$\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{II}^2)]} \le f_u/(\beta_w^*\gamma_{M2})$	145.12 < 404.71	verified	(0.36)
σ⊥ ≤ 0.9*fu/γ _{M2}	82.87 < 309.60	verified	(0.27)

CONNECTION STIFFNESS

t _{wash} =	4	[mm]	Washer thickness	[6.2.6.3.(2)]
h _{head} =	14	[mm]	Bolt head height	[6.2.6.3.(2)]
h _{nut} =	20	[mm]	Bolt nut height	[6.2.6.3.(2)]
L _b =	68	[mm]	Bolt length	[6.2.6.3.(2)]
k ₁₀ =	6	[mm]	Stiffness coefficient of bolts	[6.3.2.(1)]

STIFFNESSES OF BOLT ROWS

Nr	hj	k	K3 K 4	k5	keff,j	k _{eff,j} h _j	k _{eff,j} h _j ²
					Sum	6.23	152.16
1	355	0	239	64	0	0.80	28.55
2	280	1	1260	31	1	2.78	77.88
3	205	1	1260	45	1	2.06	42.19
4	60	1	1221	59	1	0.59	3.55
$k_{eff,j} = \sum_{Zeq} = \sum_{Zeq} z_{eq} = k_{eq} = \sum_{Zeq} z_{eq} = \sum_{Zeq}$	$k_{eff,j} = 1 / (\sum_{3}^{5} (1 / k_{i,j})) $ $z_{eq} = \sum_{j} k_{eff,j} h_{j}^{2} / \sum_{j} k_{eff,j} h_{j}$ $z_{eq} = 244 $ [mm] Equivalent force arm [6.3.3.1.(3)] $k_{eq} = \sum_{j} k_{eff,j} h_{j} / z_{j}$						
k _{eq} =	3 [mr	n] Equiv	alent stiffness coeffici	ent of a bolt a	rrangement		[6.3.3.1.(1)]
A _{vc} =	60.60 [cm ²]	Shear a	rea			EN	1993-1-1:[6.2.6.(3)]
β =	1.00	Transfo	rmation parameter				[5.3.(7)]
z =	244 [mm]	Lever a	m				[6.2.5]
k 1 =	9 [mm]	Stiffness	s coefficient of the col	umn web pane	el subjected to	shear	[6.3.2.(1)]
k ₂ =	~	Stiffness	s coefficient of the cor	npressed colu	mn web		[6.3.2.(1)]
S _{j,ini} = S _{j,ini} =	E z_{eq}² / ∑i (1 / 25147.34	k1 + 1 / k [kN*m]	2 + 1 / k _{eq}) Initial rotational stiffn	ess			[6.3.1.(4)] [6.3.1.(4)]
μ= 0 - 0	2.42		Stiffness coefficient o	f a connection			[6.3.1.(6)]
Sj = Sj Sj =	ini/μ 10396.26	[kN*m]	Final rotational stiffn	ess			[6.3.1.(4)] [6.3.1.(4)]
Conne	ection classif	ication d	ue to stiffness.				
S _{j,rig} =	12899.53	[kN*m]	Stiffness of a rigid co	onnection			[5.2.2.5]
S _{j,pin} =	806.22	[kN*m]	Stiffness of a pinned	connection			[5.2.2.5]

 $S_{j,ini} \geq S_{j,rig} \; RIGID$

WEAKEST COMPONENT:

COLUMN WEB - TENSION

7.3 ΣΥΝΔΕΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ – ΜΗΚΙΔΑΣ

Για τη σύνδεση του υποστυλώματος με τη μηκίδα χρησιμοποιήθηκαν 2 κοχλίες κατηγορίας M16 και ποιότητας 4.8 και τοποθετήθηκε έλασμα 112mm x 85mm x 8mm. Επίσης, η δυσμενέστερη εντατική της κατάσταση προέρχεται από την οριακή κατάσταση αστοχίας με κύρια μεταβλητή δράση το φορτίο χιονιού (1,35G+1,05Q+1,5·S) και καταπονείται από αξονική δύναμη N_{Ed} = 1.04 [kN], διατμητική δύναμη V_{Ed}=-0.01 [kN] και καμπτική ροπή M_{Ed} = -0.11 [kNm].

Εικόνα 7.3 Σύνδεση υποστυλώματος-μηκίδας

HEB 360

RESULTS

BOLTS CONNECTING BEAM WITH PLATE

BOLT CAPACITIES

 $F_{v,Rd} = 77.21$ [kN] Shear bolt resistance in the unthreaded portion of a bolt $F_{v,Rd} = 0.6^{*}f_{ub}^{*}A_v^{*}m/\gamma_{M2}$

Bolt bearing on the beam

Direction	Х					
k _{1x} = 1	.41	Coefficient for calc	ulation of Fb,Rd		$k_{1x} = min[2.8^{*}(e_{1}/d_{0})-1.7, 1.4^{*}(p_{1}/d_{0})-1.7,$	2.5]
$k_{1x} > 0.0$		1.41	> 0.00	verified		
α _{bx} =	0.65	Coefficient for	calculation of F	b,Rd	α _{bx} =min[e ₂ /(3*d ₀), f _{ub} /t	[u, 1]
$\alpha_{bx} > 0.0$		(0.65 > 0.00)	verified	
F _{b,Rd1x} =	23.66	[kN] Bearing resi	stance of a sin	igle bolt	$F_{b,Rd1x}=k_{1x}^{*}\alpha_{bx}^{*}f_{u}^{*}d^{*}t_{c}$	∶і/γм2
Direction	z					
k _{1z} =	2.50	Coefficient for	or calculation of	of F _{b,Rd}	$k_{1z}=min[2.8*(e_2/d_0)-1.7,$	2.5]

k _{1z} > 0.0	2.50 > 0.00 verifie	d
$\alpha_{bz} = 0.49$	Coefficient for calculation of F _{b,Rd}	α _{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0.49 > 0.00	verified
F _{b,Rd1z} = 31.74	[kN] Bearing resistance of a single bolt	F _{b,Rd1z} =k _{1z} *α _{bz} *f _u *d*t _i /γ _{M2}

Bolt bearing on the plate

Direction x

k _{1x} =	1.41	Coef	fficient for calculation of F _{b,Rd}		k _{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$)		1.41 > 0.00	verified	
α _{bx} =	0.65	C	Coefficient for calculation of F _b ,	Rd	α _{bx} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
$\alpha_{bx} > 0.0$)		0.65 > 0.00	Ve	erified
$F_{b,Rd2x} =$	80.54	[kN]	Bearing resistance of a single	e bolt	$F_{b,Rd2x}=k_{1x}^{*}\alpha_{bx}^{*}f_{u}^{*}d^{*}t_{i}/\gamma_{M2}$
Directior	١Z				
k _{1z} =	2.50		Coefficient for calculation of	F _{b,Rd}	k _{1z} =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{17} > 0.0$			2.50 > 0.00	verified	

α _{bz} = 0.41	Coefficient for calculation of F _{b,Rd}	α _{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0.41 > 0.00	verified
$F_{b,Rd2z} = 89.69$	[kN] Bearing resistance of a single bolt	F _{b,Rd2z} = k _{1z} *α _{bz} *f _u *d*ti/γ _{M2}

FORCES ACTING ON BOLTS IN THE PLATE - BEAM CONNECTION

Bolt shear

e =	56	[mm]	Distance between centroid of a bolt group and center of the princi beam web	pal	
M0 =	- 0.09	[kN*m]	Real bending moment		$M_0 = M_{b, Ed} + V_{b, Ed} * e$
F _{Nx} = F _{Vz} =	0.52	[kN] [kN]	Component force in a bolt due to influence of the longitudinal forc Component force in a bolt due to influence of the shear force	e	F _{Nx} = N _{b,Ed} /n F _{Vz} = V _{b,Ed} /n
F _{Mx} =	2.36	[kN]	Component force in a bolt due to influence of the moment on the direction	× F _{M2}	$x = M_0 ^* z_i / \sum (x_i^2 + z_i^2)$
F _{Mz} =	0.00	[kN]	Component force in a bolt due to influence of the moment on the direction	Z F _M ;	$z = M_0 ^* x_i / \sum (x_i^2 + z_i^2)$
F _{x,Ed} =	2.88	[kN]	Design total force in a bolt on the direction x		$F_{x,Ed} = F_{Nx} + F_{Mx}$
F _{z,Ed}	0.00	[kN]	Design total force in a bolt on the direction z		$F_{z,Ed} = F_{Vz} + F_{Mz}$
F _{Ed} =	2.88	[kN]	Resultant shear force in a bolt		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx}	23.6 6	[kN]	Effective design capacity of a bolt on the direction x		F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	31.7 4	[kN]	Effective design capacity of a bolt on the direction z		$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
F _{x,Ed}	≤ F _{Rdx}		2.88 < 23.66	verified	(0.12)
F _{z,Ed}	≤ F _{Rdz}		0.00 < 31.74	verified	(0.00)
F _{Ed} ≤ I	v,Rd		2.88 < 77.21	verified	(0.04)

VERIFICATION OF THE SECTION DUE TO BLOCK TEARING (AXIAL FORCE)

PLATE

$A_{nt} = 1$.	.76	[cm ²]	Net area of the section in tension	
$A_{nv} = 4$.	.16	[cm ²]	Area of the section in shear	
$V_{effRd} = 126$.	.59	[kN]	Design capacity of a section weakened by openings	$V_{effRd} = f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

$ 0.5^*N_{b,Ed} \le V_{effRd}$	0.52 < 126	.59 verifie	ed (0.00)
ВЕАМ			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	n in tension shear		
V _{effRd} = 74.37 [kN] Design capacity of a s	section weakened by	/ openings	$V_{effRd}=f_{u}*A_{nt}/\gamma_{M2} + (1/\sqrt{3})*f_{y}*A_{nv}/\gamma_{M0}$
$ N_{b,Ed} \le V_{effRd}$ 1	.04 < 74.37	verified	(0.01)

VERIFICATION OF THE SECTION DUE TO BLOCK TEARING (SHEAR FORCE)

PLATE

A _{nt} =	2.08	[cm ²]	Net area of the section in tension	
A _{nv} =	5.04	[cm ²]	Area of the section in shear	
V_{effRd} = 1	15.80	[kN]	Design capacity of a section weakened by openings V_{effRd} =0.5*fu*Ant/ γ_{M2} + (1/ $\sqrt{3}$)*f	y* A nv/γ _{M0}
0.5*Vb,Ed	$ \leq V_{effR}$	d	-0.00 < 115.80 verified	(0.00)

BEAM

VERIFICATION OF A PLATE WEAKENED BY OPENINGS

At = A _{t,net} =	5.40 3.96	[cm ²] [cm ²]	Area of tension zone of the gross section Net area of the section in tension	ו	
0.9*(At,net	$t/A_t) \ge (f_y^*)$	γм2)/(f u*γм	<i>no)</i> 0.66 < 0.80		
W _{net} =	16.89	[cm ³]	Elastic section modulus		
M _{c,Rdnet} =	4.65	[kN*m]	Design resistance of the section for bendir	g	$M_{c,Rdnet} = W_{net} f_{yp} / \gamma_{M0}$
$ M_0 \le M_c$,Rdnet		-0.05 < 4.65	verified	(0.01)
A _v =	8.96	[cm ²]	Effective section area for shear		$A_v = h_p * t_p$
A _{v,net} =	6.08	[cm ²]	Net area of a section effective for shear		$A_{vnet}=A_v-n_v*d_0$
V _{pl,Rd} =	142.26	[kN]	Design plastic resistance for shear		V _{pl,Rd} =(A _v *f _y)/(√3*γ _{M0})
0.5*V _{b,Ed}	$ \leq V_{pl,Rd}$		-0.00 < 142.26	verified	(0.00)

VERIFICATION OF A BEAM SECTION WEAKENED BY OPENINGS

At =	2.94	[cm ²]	Area of tension zone	of the gross sect	ion	
A _{t,net} =	2.10	[cm ²]	Net area of the section	on in tension		
0.9*(At,net/	$A_t \ge (f_y^*)$	γм2)/(f u*γr	ио) 0.64	1 < 0.80		
W _{net} =	8.67	[cm ³]	Elastic section modulus	3		
M _{c,Rdnet} =	2.38	[kN*m]	Design resistance of th	e section for bend	ding	M _{c,Rdnet} = W _{net} *f _{yp} /γ _{M0}
$ M_0 \leq M_{c,R}$	dnet		-0.09	9 < 2.38	verified	(0.04)
A _v =	4.93	[cm ²]	Effective section area	a for shear		
A _{v,net} =	3.24	[cm ²]	Net area of a section	effective for shea	ar	Avnet=Av-nv*d0
V _{pl,Rd} =	78.35	[kN]	Design plastic resista	ance for shear		V _{pl,Rd} =(A _v *f _y)/(√3*γ _{M0})
$V_{b,Ed} \leq V_{pl,l}$	Rd		-0.	.01 < 78.35	verified	(0.00)

WELD RESISTANCE

BUTT WELD CONNECTING PLATE WITH PRINCIPAL BEAM

A _w =	5.60	[cm ²]	Area of welds		
σ _N =	0.93	[MPa]	Stress from axial force		$\sigma_N = 0.5*N_{b,Ed}/A_s$
σм =	-5.21	[MPa]	Stress due to bending		$\sigma_{M} = 0.5*M_{0}/W_{ys}$
σ=	-4.28	[MPa]	Maximum normal stress		$\sigma = \sigma_N + \sigma_M$
τ =	-0.01	[MPa]	Tangent stress		$\tau = 0.5^*V_{b,Ed}/A_s$
βw =	0.85		Correlation coefficient		[Table 4.1]
√[σ ² +	3*τ ²] ≤ fu/(βw	/*γм2)	4.28 < 404.71	verified	(0.01)

7.4 ΕΔΡΑΣΗ ΜΕΤΑΛΛΙΚΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ

Για τη διαμόρφωση της σύνδεσης χρησιμοποιούνται πλάκα έδρασης 720mm x 600mm x 25mm ποιότητας S235, 4 αγκύρια διαμέτρου M33 και ποιότητας 6.8 και σκυρόδεμα ποιότητας C20/25. Τα αγκύρια είναι ευθύγραμμα με μήκος 820mm, εντός του θεμελίου. Η πλάκα αγκύρωσης των αγκυρίων, εντός του θεμελίου έχει διαστάσεις 100mm x 100mm x10mm. Μεταξύ της πλάκας έδρασης και του θεμελίου τοποθετείται στρώση κονιάματος πάχους 30mm. Η σύνδεση σχεδιάστηκε με τα εντατικά μεγέθη του δυσμενέστερου συνδυασμού (1,35G+1,05Q+1,5·S), τα οποία είναι: $M_{Ed,y}$ =-109.68 [kNm], $M_{Ed,z}$ =0.31 [kNm], $V_{Ed,y}$ =0.89 [kN], $V_{Ed,z}$ =43.66 [kN], N_{Ed} =-57.13 [kN].

Εικόνα 7.4 Έδραση μεταλλικού υποστυλώματος

RESULTS

COMPRESSION ZONE

COMPRESSION OF CONCRETE

$f_{cd} = 13.33$	[MPa]	Design compressive resistance	EN 1992-1:[3.1.6.(1)]
f _j = 20.24	[MPa]	Design bearing resistance under the base plate	[6.2.5.(7)]
$c = t_p \sqrt{(f_{yp}/(3^*f_j^*\gamma_{MO}))}$)		
c = 53 [r	nm] Add	itional width of the bearing pressure zone	[6.2.5.(4)]
b _{eff} = 129 [n	nm] Effe	ctive width of the bearing pressure zone under the flange	[6.2.5.(3)]
l _{eff} = 406 [r	nm] Effe	ctive length of the bearing pressure zone under the flange	[6.2.5.(3)]
$A_{c0} = 523.87$ [c	m ²] Area	a of the joint between the base plate and the foundation	EN 1992-1:[6.7.(3)]
$A_{c1} = 4714.87$ [c	m²] Max	timum design area of load distribution	EN 1992-1:[6.7.(3)]
$F_{rdu} = A_{c0}^* f_{cd}^* \sqrt{(A_{c1})}$	$A_{c0}) \leq 3^*$	A _{c0} *f _{cd}	
$F_{rdu} = 2095.50$	[kN]	Bearing resistance of concrete	EN 1992-1:[6.7.(3)]
$\beta_j = 0.67$		Reduction factor for compression	[6.2.5.(7)]
$f_{jd} = \beta_j F_{rdu} / (b_{eff} l_{eff})$			
f _{jd} = 26.67	[MPa]	Design bearing resistance	[6.2.5.(7)]
A _{c,n} = 2887.92	[cm ²]	Bearing area for compression	[6.2.8.2.(1)]
A _{c,y} = 1056.27	[cm ²]	Bearing area for bending My	[6.2.8.3.(1)]
Ac,z = 910.11	[cm ²]	Bearing area for bending Mz	[6.2.8.3.(1)]
$F_{c,Rd,i} = A_{C,i} f_{jd}$			
$F_{c,Rd,n} = 7701.12$	[kN]	Bearing resistance of concrete for compression	[6.2.8.2.(1)]
$F_{c,Rd,y} = 2816.72$	[kN]	Bearing resistance of concrete for bending My	[6.2.8.3.(1)]
$F_{c,Rd,z} = 2426.97$	[kN]	Bearing resistance of concrete for bending Mz	[6.2.8.3.(1)]
COLUMN FLANGE		/EB IN COMPRESSION	
CL = 1.00		Section class	EN 1993-1-1:[5.5.2]
W _{pl,y} = 9811.14	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,y} = 2698.06$	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
h _{f,y} = 454	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]
$F_{c,fc,Rd,y} = M_{c,Rd,y} / h$	f,y		
$F_{c,fc,Rd,y} = 5944.17$	[kN]	Resistance of the compressed flange and web	[6.2.6.7.(1)]
W _{pl,z} = 5676.51	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
M _{c,Rd,z} = 1561.04	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
h _{f,z} = 320	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]
$F_{c,fc,Rd,z} = M_{c,Rd,z} / h$	f,z		
$F_{c,fc,Rd,z} = 4878.25$	[kN]	Resistance of the compressed flange and web	[6.2.6.7.(1)]
RESISTANCES OF		AD FOOTING IN THE COMPRESSION ZONE	
N _{i,Rd} = F _{c,Rd,n}			
N _{j,Rd} = 7701.12 [kN] Re	sistance of a spread footing for axial compression	[6.2.8.2.(1)]
$F_{C,Rd,y} = min(F_{c,Rd,y},$	F _{c,fc,Rd,y})	· - · ·	_ ()_
F _{C,Rd,y} = 2816.72	[kN] Re	esistance of spread footing in the compression zone	[6.2.8.3]
$F_{C,Rd,z} = min(F_{c,Rd,z},$	F _{c,fc,Rd,z})		
$F_{C,Rd,z} = 2426.97$	[kN] Re	esistance of spread footing in the compression zone	[6.2.8.3]

TENSION ZONE

A ₂ =6.94[ImP]Effective anchor areaImage and the second probability of the anchor materialImage and the second probability of the second	STEEL FAILURE		
	$A_b = 6.94 \text{ [cm}^2\text{]}$	Effective anchor area	[Table 3.4]
Beta =0.85Reduction factor of anchor resistance[3.6.1.(3)] F_{LR045} = beta '0 '4''_0 'A''_0'Anchor resistance to steel failure[Table 3.4] γ_{Me} =1.20Partial safety factorCEB [3.2.32] f_{Ned2} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.32] f_{Ned2} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.32] F_{LR042} = $f_{MA}^{AV}\gamma_{Ma}$ Anchor resistance to steel failure PUL-OUT FAILURE CEB [1.5.1.23] f_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [1.5.1.23] γ_{Ma} = 2.1.65Characteristic compressive strength of concrete (pull-out) γ_{Ma} = 2.1.65Partial safety factor Γ_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [2.2.3] F_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.3] F_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.3] Γ_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.3] Γ_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.3] Γ_{LR04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.3] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}^{AV}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{Ma}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}$ CEB [3.2.4] Γ_{R04} = $f_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}\gamma_{MA}^{AV}$	f _{ub} = 600.00 [MPa]	Tensile strength of the anchor material	[Table 3.4]
$ F_{\text{LRM}} = \text{bela}^{3} 0.97 \text{fm}^{3} \text{Adv}_{\text{MM}} $ $ F_{\text{LRM}} = 234.34 [\text{KN}] \text{Anchor resistance to steel failure} \qquad [\text{Table 3.4}] $ $ \gamma_{\text{RM}} = 1.20 \text{Partial safety factor} \text{CEB [3.2.2]} $ $ F_{\text{LRM}} = 247.60 [\text{MFa]} \text{Anchor resistance to steel failure} \text{CEB [3.2.2]} $ $ F_{\text{LRM}} = 2277.60 [\text{KN}] \text{Anchor resistance to steel failure} \text{CEB [3.2.2]} $ $ F_{\text{LRM}} = 24.84 [\text{KN}] \text{Anchor resistance to steel failure} \text{CEB [3.2.2]} $ $ F_{\text{LRM}} = 234.84 [\text{KN}] \text{Anchor resistance to steel failure} \text{CEB [3.2.2]} $ $ F_{\text{LRM}} = 234.84 [\text{KN}] \text{Anchor resistance to steel failure} \text{CEB [15.1.2.3]} $ $ p_{\text{LL}} = 150.00 [\text{MPa]} \text{Characteristic compressive strength of concrete} \text{EN 1992-1[3.1.2]} $ $ p_{\text{LRM}} = 2.16 \text{Partial safety factor} \text{CEB [3.2.3]} $ $ F_{\text{LRM}} = 2.3679 \text{(MPa]} \text{Characteristic strength of concrete (pull-out)} \text{CEB [15.1.2.3]} $ $ p_{\text{LRM}} = 635.05 [\text{KN}] \text{Design uplift capacity} \text{CEB [9.2.4]} $ $ F_{\text{LRM}} = 9.670 [\text{mm}] \text{Effective anchorage depth} \text{CEB [9.2.4]} $ $ F_{\text{LRM}} = 2.16 \text{Partial safety factor} \text{CEB [9.2.4]} $ $ F_{\text{LRM}} = 9.670 [\text{mm}] \text{Critical width of the concrete cone} \text{CEB [9.2.4]} $ $ F_{\text{LRM}} = 9.670 [\text{mm}] \text{Critical width of the concrete cone} \text{CEB [9.2.4]} $ $ S_{\text{RM}} = 0.073 \text{Factor related to anchor spacing and edge distance} \text{CEB [9.2.4]} $ $ A_{\text{LN}} = 40001.00 [\text{cm}] \text{Actual area of concrete cone} \text{CEB [9.2.4]} $ $ A_{\text{LN}} = 0.470 \text{O} 3^{-1} \text{O} \text{S} \text{CONCRETE CONE FALLURE} $ $ F_{\text{LRM}} = 0.370 \text{Factor related to anchor spacing and edge distance} \text{CEB [9.2.4]} $ $ A_{\text{LN}} = 0.470 \text{O} 3^{-1} \text{Caccle sist} 1.0 $ $ Y_{\text{LN}} = 0.740 \text{O} 3^{-1} \text{Caccle sist} 1.0 $ $ Y_{\text{LN}} = 0.740 \text{O} 3^{-1} \text{Caccle sist} 1.0 $ $ Y_{\text{LN}} = 0.740 \text{O} 3^{-1} \text{Caccle sist}$	Beta = 0.85	Reduction factor of anchor resistance	[3.6.1.(3)]
$F_{RR4} = 254.84 [kN] Anchor resistance to steel failure [Table 3.4] p_{kb} = 1.20 Partial safety factor CEB [3.2.32] f_{kr} = 480.00 [MPa] Yield strength of the anchor material CEB [9.2.2] F_{R482} = f_{kr}^{Ab} / m_{b} F_{R482} = 277.60 [kN] Anchor resistance to steel failure CEB [9.2.2] F_{R482} = min(F_{R484}, F_{R484}) F_{R484} = 274.60 [kN] Anchor resistance to steel failure CEB [9.2.2] F_{R482} = min(F_{R484}, F_{R484}) F_{R484} = 274.60 [kN] Anchor resistance to steel failure CEB [9.2.2] F_{R482} = 274.64 [kN] Anchor resistance to steel failure CEB [9.2.1] PUL-OUT FAILURE F_{R484} = 0.145 [cm] Bearing area of the head CEB [15.12.3] p_{k} = 2.16 Partial safety factor CEB [9.2.4] CEB [15.12.3] p_{k} = 2.16 Partial safety factor CEB [9.2.4] CEB [9.2.3] CONCRETE CONE FAILURE Failure Pithod (CEB [9.2.4] CEB [9.2.3] CONCRETE CONE FAILURE Failure CEB [9.2.4] Ance 9 00[N45 Smm20] T_{6.1}^{6.1} m_{1.5}^{6.1} (S.1) Characteristic resistance of an anchor CEB [9.2.4] Ance 9 00[N45 Smm20] T_{6.1}^{6.1} m_{1.5}^{6.1} (S.1) Characteristic decorrete cone CEB [9.2.4] Ance 9 00[N45 Smm20] T_{6.1}^{6.1} m_{1.5}^{6.1} (S.1) Characteristic decorrete cone CEB [9.2.4] Ance 9 00[N45 Smm20] T_{6.1}^{6.1} m_{1.5}^{6.1} (S.1) Characteristic resistance of an anchor CEB [9.2.4] Ance 40401.00 [cm] Critical edge distance on CEB [9.2.4] Ance 40401.00 [cm] Actual area of concrete cone CEB [9.2.4] Ance 40401.00 [cm] Actual area of concrete cone CEB [9.2.4] Ance 40401.00 [cm] Actual area of concrete cone CEB [9.2.4] Ance 5 Ance Ance S 10.0 Werk 0.3 Factor taking account the influence of edges of the concrete member on the distribution of CEB [9.2.4] Werk 0.3 Factor taking account the influence of edges of the concrete member on the distribution of CEB [9.2.4] Werk 0.4 Factor taking account the influence of edges of the concrete member on the distribution of CEB [9.2.4] Werk 0.5 Heigmnend Tyrk Werk Werk Werk Werk Werk (CEB [9.2.4] Werk 0.5 Heigmnend Tyrk Werk Werk Werk Werk Werk Werk Werk We$	$F_{t,Rd,s1} = beta*0.9*f_{ub}*A_b/\gamma_{M2}$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$F_{t,Rd,s1} = 254.84$ [kN]	Anchor resistance to steel failure	[Table 3.4]
	γ _{Ms} = 1.20	Partial safety factor	CEB [3.2.3.2]
$F_{URd22} = f_{0}^{*} A_{0} / m_{0} $ $F_{URd22} = 277.60 [[N] Anchor resistance to steel failure CEB [9.2.2] F_{URd3} = 254.84 [[N] Anchor resistance to steel failure PULL-OUT FAILURE f_{L} = 20.00 [MPa] Characteristic compressive strength of concrete EN 1992-1;[3.1.2] A_{a} = 91.45 [cm2] Bearing area of the head CEB [15.1.2.3] p_{0} = 2.16 Partial safety factor CEB [9.2.3] F_{URd2} = p_{a}^{*} A_{0} / m_{b} F_{URd2} = 0.00 [MPa] Characteristic strength of concrete (pull-out) CEB [15.1.2.3] (CEB [9.2.3] CONCRETE CONE FAILURE h_{c} = 670 [mm] Effective anchorage depth CEB [9.2.4] (CEB [9.2.5] (CEB [9.2.5] (CEB$	fyb = 480.00 [MPa]	Yield strength of the anchor material	CEB [9.2.2]
$ F_{\rm EMax2} = 277.60 [KN] {\rm Anchor resistance to steel failure} \\ F_{\rm EMax} = {\rm min}[F_{\rm EMax1}, F_{\rm EMax2}] \\ F_{\rm EMax} = 254.84 [KN] {\rm Anchor resistance to steel failure} \\ \\ $	$F_{t,Rd,s2} = f_{yb} * A_b / \gamma_{Ms}$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$F_{t,Rd,s2} = 277.60$ [kN]	Anchor resistance to steel failure	CEB [9.2.2]
$\begin{aligned} F_{1Rds} = min(F_{Rds1}, F_{1Rds2}) \\ F_{1Rds} = 254.84 [KN] Anchor resistance to steel failure \end{aligned}$ $\begin{aligned} \textbf{PUL-OUT FALLURE} \\ F_{1Rds} = 20.00 [MPa] Characteristic compressive strength of concrete EN 1992.1 [3.1.2] \\ A_{h} = 91.45 [cm2] Bearing area of the head CEB [15.1.2.3] \\ p_{h} = 2.16 Partial safety factor CEB [3.2.3] \\ F_{1Rdsp} = p_{s}^*A_{s}/m_{p} \\ F_{1Rdsp} = 635.05 [KN] Design uplift capacity CEB [9.2.3] \\ \hline Kns_{c0}^{2} = 9.0[N^{0.4}/mm^{0.9}]^*L_{s}^{0.9*}h_{s}^{1.5} \\ \hline CORCETE CONE FAILURE \\ heit = 670 [mn] Effective anchorage depth CEB [9.2.4] \\ Nns_{c0}^{0} = 9.0[N^{0.4}/mm^{0.9}]^*L_{s}^{0.9*}h_{s}^{1.5} \\ \hline CRes = 2010 [mn] Critical edge distance cone CEB [9.2.4] \\ Can = 1005 [mn] Critical edge distance cone CEB [9.2.4] \\ Can = 1005 [mn] Critical edge distance cone CEB [9.2.4] \\ Can = A_{cN}/A_{cN0} \\ Can = A_{cN}/A_{cN0} \\ Can = 0.77 Castor related to anchor spacing and edge distance CEB [9.2.4] \\ Wan = A_{cN}/A_{cN0} \\ W_{AN} = 0.37 Factor related to anchor spacing and edge distance CEB [9.2.4] \\ Wan = 0.7 + 0.3'C/can $1.0 \\ W_{N} = 0.5 + he[(mm]/200 \le 1.0 \\ W_{eN} = \frac{1.0}{0} \text{ Sator related to distribution of tensile forces acting on anchor \\ CEB [9.2.4] \\ W_{eN} = 0.5 + he[(mm]/200 \le 1.0 \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = 0.5 + he[(mm]/200 \le 1.0 \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.4] \\ W_{eN} = \frac{2.1}{0} \text{ Partial safety factor \\ CEB [9.2.5] \\ Nin_{e0} = 0.0[N^{0.9}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{e0}M_{$			
$ F_{URds} = 254.84 [kN] Anchor resistance to steel failure \\ $	$F_{t,Rd,s} = min(F_{t,Rd,s1},F_{t,Rd,s2})$		
PULL-OUT FAILURE $f_{a} = 20.00$ [MPa]Characteristic compressive strength of concreteEN 1992-1;[3.1.2] $A_{n} = 91.45$ [cm?]Bearing area of the headCEB [15.1.2.3] $p_{k} = 150.00$ [MPa]Characteristic strength of concrete (pull-out)CEB [15.1.2.3] $p_{k} = 2.16$ Partial safety factorCEB [9.2.3]FURdp = $p_{k}^{*}A_{v}/m_{0}$ Find a factorCEB [9.2.3]CONCETE CONE FAILUREImm b Effective anchorage depthCEB [9.2.4] $N_{k,c}^{0} = 9.0[N^{0.5}/m^{0.5})r_{k}^{-1.5}$ Site and the concrete coneCEB [9.2.4] $N_{k,c}^{0} = 9.0[N^{0.5}/m^{0.5}]r_{k}^{-1.5}$ Citical width of the concrete coneCEB [9.2.4] $N_{k,c}^{0} = 9.0[N^{0.5}/m^{0.5}]r_{k}^{-1.5}$ Site and concrete coneCEB [9.2.4] $N_{k,c}^{0} = 10.005$ [mm]Critical width of the concrete coneCEB [9.2.4] $N_{k,c}^{0} = 10.005$ [cm²]Actual area of concrete coneCEB [9.2.4] $N_{k,n} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{k,n} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{k,n} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{k,n} = 0.7 + 0.3^{*}ch_{k-n} + 1.0$ Factor related to distribution of tensile forces acting on anchorsCEB [9.2.4] $V_{k,n} = 0.5 + hel[mm]/200 \le 1.0$ $V_{k,n} = 0.5 + hel[mm]/200 \le 1.0$ $V_{k,n} = 0.5 + hel[mm]/200 \le 1.0$ $V_{k,n} = 0 = 0.0^{*} (r_{k,n} + v_{k,n} + v_{k$	$F_{t,Rd,s} = 254.84$ [kN]	Anchor resistance to steel failure	
PULL-OUT FAILURE $f_{ak} = 20.00$ [MPa] Characteristic compressive strength of concreteEN 1992-1:[3.12] $f_{ah} = 91.45$ [cm ⁷] Bearing area of the headCEB [15.1.2.3] $p_{k} = 150.00$ [MPa] Characteristic strength of concrete (pull-out)CEB [15.1.2.3] $p_{Mp} = 2.16$ Partial safety factorCEB [9.2.3] CONCRETE CONE FAILURE CEB [9.2.3] $h_{Re}0^0 = 0.0[N^0/mn^0]^{+}r_k0^{+}sh_{a}^{+.5}$ CEB [9.2.4] $N_{Re}0^0 = 0.0[N^0/mn^0]^{-}r_k0^{+}sh_{a}^{+.5}$ CEB [9.2.4] $N_{Re}0^0 = 0.0[N^0/mn^0]^{-}r_k0^{+}sh_{a}^{+.5}$ CEB [9.2.4] $N_{RR}0^{-} + 0.3^{+}cc_{RR}^{-} = 1.0^{-}$ Maximum area of concrete cone $V_{RR} N = 0.37$ Factor related to anchor spacing and edge distance $V_{RR} N = 0.5 + he[mm]/200 \le 1.0$ Verant 0.5 $V_{RR} N = 0.5 + he[mm]/200 \le 1.0$ Verant 0.5 $V_{RR} N = 0.5 + he[mm]/200 \le 1.0$ CEB [9.2.4] $V_{RR} N = 0.5 + he[mm]/200 \le 1.0$ CEB [9.2.4] <td></td> <td></td> <td></td>			
f_{A} =20.00[MPa]Characteristic compressive strength of concreteEN 1992-1;[3.1.2]A_h =91.45[Cm²]Bearing area of the headCEB [15.12.3] $y_{B} =$ 150.00[MPa]Characteristic strength of concrete (pull-out)CEB [15.12.3] $y_{Mp} =$ 2.16Partial safety factorCEB [3.2.3.1] $F_{IRd,p} = p_k^* A_w / y_{M}$ EPartial safety factorCEB [9.2.4] $CONCRETE CONE FAILURE$ CEB [9.2.4]Nex.0°E.05[KN] $har =$ 670[mm]Effective anchorage depthCEB [9.2.4] $Nex.0° =$ 9.0[N°5/mm°5]*f_60*h_m^{-1.5}Nex.0° =CEB [9.2.4] $Nex.0° =$ 9.0[N°5/mm°5]*f_60*h_m^{-1.5}Nex.0° =CEB [9.2.4] $A_{RA0} =$ 0.100[mm]Critical width of the concrete coneCEB [9.2.4] $A_{AN0} =$ 40.401.00[mm]Aximum area of concrete coneCEB [9.2.4] $A_{AN0} =$ 0.30Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{AN} = A_{CN}/A_{CN0}$ Wan = 0.37Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{aN} = 0.7 + 0.3^* Cfoc.n ≤ 1.0$ Wan = 0.6 forces acting on anchorCEB [9.2.4] $V_{eN} =$ 1.0Factor related to distribution of tensile forces acting on anchorsCEB [9.2.4] $V_{eN} =$ 1.0Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $V_{eN} =$ 0Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.6] V	PULL-OUT FAILURE		
$ A_h = 91.45 [cm^2] Bearing area of the head CEB [15.12.3] p_k = 150.00 [MPa] Characteristic strength of concrete (pull-out) CEB [15.12.3] p_k = 2.16 Partial safety factor CEB [3.2.31] F_{IRd,p} = k^A_Ar/M_b F_{IRd,p} = 635.05 [kN] Design uplift capacity CEB [9.2.4] Mark_0 = 0.0(MPs/mm^0.5)m_{10}^{-5.5} he_{11}^{-5.5} NR_{k,c}^0 = 698.02 [kN] Characteristic resistance of an anchor CEB [9.2.4] Mark_0 = 0.0(MPs/mm^0.5)m_{10}^{-5.5} he_{11}^{-5.5} NR_{k,c}^0 = 698.02 [kN] Characteristic resistance of an anchor CEB [9.2.4] Mark_0 = 0.0(MPs/mm^0.5)m_{10}^{-5.5} he_{11}^{-5.5} NR_{k,c}^0 = 698.02 [kN] Characteristic resistance of an anchor CEB [9.2.4] Mark_0 = 40401.00 [cm^2] Maximum area of concrete cone CEB [9.2.4] A_{c,N0} = 40401.00 [cm^2] Actual area of concrete cone CEB [9.2.4] A_{c,N0} = 40401.00 [cm^2] Actual area of concrete cone CEB [9.2.4] V_{A,N} = 4.0.7 + 0.3^{-7} Caccus ≤ 1.0 V_{FA,N} = 0.37 Factor related to anchor spacing and edge distance CEB [9.2.4] V_{e,N} = 0.3 Factor taking account the influence of edges of the concrete member on the distribution of CEB = 0 S the actor taking account the influence of edges of the concrete member on the distribution of CEB = 0 S the legand gator CEB [9.2.4] V_{e,N} = 1.0 Factor related to distribution of tensile forces acting on anchors [9.2.4] V_{e,N} = 1.0 Factor taking into account whether the anchorage is in cracked or non-cracked $	f _{ck} = 20.00 [MPa] 0	Characteristic compressive strength of concrete	EN 1992-1:[3.1.2]
$p_k = 150.00$ [MPa]Characteristic strength of concrete (pull-out)CEB [15.1.2.3] $\gamma_{Mp} = 2.16$ Partial safety factorCEB [3.2.3] F URdp = $p^k N_h / M_h$ CEB [9.2.4] $F_{LRdp} = p^k N_h / M_h$ CEB [9.2.4] $N_{Rk}^0 = 9.0 [N^{0.5}/mm^{0.5}]^* f_k 0^{-5} h_k d^{-5}$ $N_{Rk}^0 = 9.0 [N^{0.5}/mm^{0.5}]^* f_k 0^{-5} h_k d^{-5}$ $N_{Rk}^0 = 9.0 [N^{0.5}/mm^{0.5}]^* f_k 0^{-5} h_k d^{-5}$ $N_{Rk}^0 = 690.02$ [KN]Characteristic resistance of an anchorCEB [9.2.4] $Set, N = 2010$ [mm]Critical width of the concrete coneCEB [9.2.4] $Set, N = 2010$ [mm]Critical edge distanceCEB [9.2.4] $A_{c,N} = 4010.00$ [cm ²]Actual area of concrete coneCEB [9.2.4] $A_{c,N} = 4010.00$ [cm ²]Actual area of concrete coneCEB [9.2.4] $A_{c,N} = 0.7 + 0.3^{-2} (cc_{ct N} \le 1.0)$ Yan = 0.7 Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{e,N} = 0.7 + 0.3^{-2} (cc_{et N} \le 1.0)$ Yan = 0.5 + he[mm]/200 ≤ 1.0CEB [9.2.4] $V_{e,N} = 1.0^{0}$ Shell spalling factorCEB [9.2.4] $V_{e,N} = 1.0^{0}$ Shell spalling factorCEB [9.2.4] $V_{e,N} = 0.5 + he[mm]/200 \le 1.0$ Yan $N_{e,N} = 0.5 + he[mm]/200 \le 1.0$ Yan $N_{e,N} = 0.5 + he[mm]/200 \le 1.0$ $V_{e,N} = 1.0^{0}$ Shell spalling factorCEB [9.2.4] $V_{e,N} = 0.5 + he[mm]/200 \le 1.0$ CEB [9.2.4] $V_{e,N} = 0.5 + he[mm]/200 \le 1.0$ CEB [9.2.5] $V_{e,N} = 0.5 + he[mm]/200 \le 1.0$ CEB [9.2.5] $V_{e,N} = 0.5 + he[mm]/20$	$A_h = 91.45 \text{ [cm^2]} \text{ I}$	Bearing area of the head	CEB [15.1.2.3]
$\begin{split} y_{M0} &= 2.16 & \text{Partial safety factor} & \text{CEB} [3.2.3.1] \\ F_{IRd,p} &= p_{A}^*A_{M} / y_{M0} & \text{CEB} [9.2.3] \\ \hline \\ \textbf{CONCRETE CONE FAILURE} & \text{CEB} [9.2.4] \\ N_{Rc,0} &= 9.0 [N^{9.5} / \text{mm}] & \text{Effective anchorage depth} & \text{CEB} [9.2.4] \\ N_{Rc,0} &= 9.0 [N^{9.5} / \text{mm}] & \text{Cffective anchorage depth} & \text{CEB} [9.2.4] \\ N_{Rc,0} &= 9.0 [N^{9.5} / \text{mm}] & \text{Critical width of the concrete cone} & \text{CEB} [9.2.4] \\ N_{Rc,0} &= 0.010 & [\text{mm}] & \text{Critical width of the concrete cone} & \text{CEB} [9.2.4] \\ N_{Rc,0} &= 4.0010 & [\text{mm}] & \text{Critical width of the concrete cone} & \text{CEB} [9.2.4] \\ A_{c,N} &= 1.0105 & [\text{mm}] & \text{Critical width of the concrete cone} & \text{CEB} [9.2.4] \\ A_{c,N} &= 1.0100 & [\text{cm}]^2 & \text{Maximum area of concrete cone} & \text{CEB} [9.2.4] \\ A_{c,N} &= 1.0100 & [\text{cm}]^2 & \text{Maximum area of concrete cone} & \text{CEB} [9.2.4] \\ N_{A,N} &= A_{c,N} / A_{c,N0} & \text{Cerv} &= 1.000 & [\text{cm}]^2 & \text{Maximum area of concrete cone} & \text{CEB} [9.2.4] \\ V_{A,N} &= A_{c,N} / A_{c,N0} & \text{Maximum area of concrete cone} & \text{CEB} [9.2.4] \\ V_{F,N} &= 037 & \text{Factor related to anchor spacing and edge distance} & \text{CEB} [9.2.4] \\ V_{F,N} &= 0.8 & \text{Factor taking account the influence of edges of the concrete member on the distribution of \\ = 3 & \text{stresses in the concrete} & [9.2.4] \\ V_{F,N} &= 0.5 & \text{the}[mm]/200 \leq 1.0 & \text{CEB} \\ = 0 & \text{Cactor taking into account whether the anchorage is in cracked or non-cracked \\ & 0 & \text{concrete} & \text{CEB} [9.2.4] \\ V_{MC} &= \frac{1.0}{6} & \text{Shell spalling factor} & \text{CEB} [9.2.4] \\ V_{MC} &= \frac{2.1}{6} & \text{Partial safety factor} & \text{CEB} [9.2.4] \\ V_{MC} &= \frac{2.3}{6} & \text{Partial safety factor} & \text{CEB} [9.2.4] \\ V_{MC} &= \frac{2.3}{6} & \text{Partial safety factor} & \text{CEB} [9.2.5] \\ SPLITTING FALLIRE & \text{Leace} N_{MA} N_{MA} N_{M} \\ V_{MC} &= \frac{6.70}{6} & \text{[mm]} & \text{Effective anchorage depth} & \text{CEB} [9.2.5] \\ N_{R_{C}} &= 9.0 (N^{9.5} N_{M} N_{M} N_{M} N_{M} N_{M} N_{M} N_{M}$	$p_k = 150.00 $ [MPa] (Characteristic strength of concrete (pull-out)	CEB [15.1.2.3]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	γ _{Mp} = 2.16	Partial safety factor	CEB [3.2.3.1]
$ F_{URdp} = 635.05 \ [kN] Design uplift capacity CEB [9.2.3] $	$F_{t,Rd,p} = p_k * A_h / \gamma_{Mp}$		
CONCRETE CONE FAILURE $h_{ef} = 670 \text{ [mm]}$ Effective anchorage depthCEB [9.2.4] $N_{Rk,c}^{0} = 9.0[N^{0.5}/\text{mm}^{0.5}]^{+}_{fk}^{0.5+}\text{herl}^{1.5}$ CEB [9.2.4] $Ser,N = 2010 \text{ [mm]}$ Critical width of the concrete coneCEB [9.2.4] $Ser,N = 1005 \text{ [mm]}$ Critical edge distanceCEB [9.2.4] $A_{c,N0} = 40401.00 \text{ [cm²]}$ Maximum area of concrete coneCEB [9.2.4] $A_{c,N0} = 40401.00 \text{ [cm²]}$ Actual area of concrete coneCEB [9.2.4] $A_{c,N0} = 40401.00 \text{ [cm²]}$ Actual area of concrete coneCEB [9.2.4] $A_{c,N} = A_{c,N}/A_{c,N0}$ VAN = $A_{c,N}/A_{c,N0}$ $\Psi_{A,N} = 0.37$ Factor related to anchor spacing and edge distance $C EB [9.2.4]$ VAN = $A_{c,N}/A_{c,N0}$ $\Psi_{a,N} = 0.7 + 0.3^{*}C/c_{c,N} \leq 1.0$ $\Psi_{a,N} = 0.7 + 0.3^{*}C/c_{c,N} \leq 1.0$ $\Psi_{a,N} = 0.5 + hed[mm]/200 \leq 1.0$ $\Psi_{e,N} = 1.0$ $\Psi_{e,N} = 0.5 + hed[mm]/200 \leq 1.0$ $\Psi_{e,N} = 1.0$ $\Psi_{a,N} = \frac{2.1}{6}$ Ψ	F _{t,Rd,p} = 635.05 [kN]	Design uplift capacity	CEB [9.2.3]
CONCRETE CONE FAILURE $h_{etc} = 670$ [mm] Effective anchorage depthCEB [9.2.4] $Ne_{ec} 0^{0} = 9.0 [N^{0.5}/mm^{0.5}]^{+} t_{a0}^{0.5} h_{etc}^{1.5}$ CEB [9.2.4] $Ser_{N} = 2010$ [mm] Critical width of the concrete coneCEB [9.2.4] $Ser_{N} = 1050$ [mm] Critical edge distanceCEB [9.2.4] $A_{cN} = 10401.00$ [cm ²] Maximum area of concrete coneCEB [9.2.4] $A_{cN} = 15120.00$ [cm ²] Actual area of concrete coneCEB [9.2.4] $V_{AN} = A_{cN} / A_{c,N0}$ $V_{AN} = A_{cN} / A_{c,N0}$ $V_{AN} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $V_{aN} = 0.7 + 0.3^{*} c/c_{c.N} \le 1.0$ $V_{aN} = 0.5 + he[mm]/200 \le 1.0$ $V_{ecN} = 1.0^{0}$ Factor related to distribution of tensile forces acting on anchorsCEB [9.2.4] $V_{MEN} = 0.5 + he[mm]/200 \le 1.0$ $V_{ecN} = 1.0^{0}$ Shell spalling factorCEB [9.2.4] $V_{ME} = \frac{2.1}{6}$ Partial safety factorCEB [9.2.5] $Sec_{NE} = 9.0 [N^{0.5}/mm^{0.5}]^{+} r_{en}^{+.5} N^{+} V_{ec} N^{+} N^{-} N^{+} N^{-} N^{+} N^{-} N^{+} N^{-} N^{+} N^{-} N^{+} N^{+}$			
$\begin{split} & h_{ef} = & 670 & [mm] & Effective anchorage depth & CEB [9.2.4] \\ & N_{Rex} O^{0} = 9.0 [N^{0.5}/mm^{0.5}] f_{ex}^{0.5} h_{eff}^{1.5} & CEB [9.2.4] \\ & S_{er,N} = & 2010 & [mm] & Critical width of the concrete cone & CEB [9.2.4] \\ & C_{er,N} = & 1005 & [mm] & Critical edge distance & CEB [9.2.4] \\ & A_{c,N0} = & 40401.00 & [cm^{2}] & Maximum area of concrete cone & CEB [9.2.4] \\ & A_{c,N0} = & 40401.00 & [cm^{2}] & Maximum area of concrete cone & CEB [9.2.4] \\ & A_{c,N} = & 15120.00 & [cm^{2}] & Actual area of concrete cone & CEB [9.2.4] \\ & VA,N = A_{c,N/A_{c,N0}} & VA,N = & 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & C = & 430 & [mm] & Minimum edge distance from an anchor & CEB [9.2.4] \\ & V_{g,N} = 0.7 + 0.3^* c/c_{er,N} \le 1.0 \\ & V_{g,N} = 0.6 & Factor taking account the influence of edges of the concrete member on the distribution of & CEB \\ & 0 & 0 & Factor taking account the influence of edges of the concrete member on the distribution of & CEB \\ & 0 & 0 & CEB \\ & 0 & 0 & CEB \\ & 0 & 0 & CEB (9.2.4] \\ & V_{we,N} = 0.5 + h_{eff}(mm]/200 \le 1.0 \\ & V_{we,N} = 0.5 + h_{eff}(mm)/200 \le 1.0 \\ & V_{we,N} = \frac{1 \cdot 0}{0} & Shell spalling factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{0} & Shell spalling factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{0} & Shell spalling factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{6} & Partial safety factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{6} & Partial safety factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{6} & Partial safety factor & CEB [9.2.4] \\ & V_{Wer,N} = \frac{1 \cdot 0}{6} & Partial safety factor & CEB [9.2.5] \\ & SPLITTING FAILURE & ENt (SC)^{0} & Shell Spalling anchor resistance to concrete & CEB [9.2.5] \\ & S_{Rex}O^{0} = 9.0[N^{0.5}/mm^{0.5}] f_{ex}O^{0.5}h_{eff}^{1.5} & CEB [9.2.5] \\ & S_{Rex}O^{0} = 9.0[N^{0.5}/mm^{0.5}] f_{ex}O^{0.5}h_{eff}^{1.5} & CEB [9.2.5] \\ & S_{Rex}O^{0} = 9.0[N^{0.5}/mm^{0.5}] f_{ex}O^{0.5}h_{eff}^{1.5} & CEB [9.2.5] \\ & S_{Rex}O^{0} = 0.0[N^{0.5}/mm^{0.5}] f_{ex}O^{0.5}h_{eff}^{1.5} & CEB [9.2.5] \\ & S_{Rex}O^$	CONCRETE CONE FAILUR	RE	
$\begin{split} & Nekc^0 = 9.0[N^0 S/mm^0 S]^* f_w^0 S^{sh} he^{1,5} \\ & Nek^0 = 698.02 [KN] Characteristic resistance of an anchor & CEB [9.2.4] \\ & cr_N = 1005 [mm] Critical width of the concrete cone & CEB [9.2.4] \\ & ce_N0 = 40401.00 [cm^2] Maximum area of concrete cone & CEB [9.2.4] \\ & A_c,N = 15120.00 [cm^2] Actual area of concrete cone & CEB [9.2.4] \\ & A_c,N = 15120.00 [cm^2] Actual area of concrete cone & CEB [9.2.4] \\ & VAN = A_c,N/Ae,N0 & VE \\ & VAN = 0.37 & Factor related to anchor spacing and edge distance & \mathsf{CEB [9.2.4] \\ & c = 430 [mm] Minimum edge distance from an anchor & CEB [9.2.4] \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_NN = 0.7 + 0.3^* c/cor_rN \leq 1.0 \\ & v_VeN = \frac{1 \cdot 0}{0} Factor related to distribution of tensile forces acting on anchors \\ & = 9.0 \\ & \mathsf{CEB [9.2.4] \\ & v_VeN = \frac{1 \cdot 0}{0} Factor taking into account whether the anchorage is in cracked or non-cracked \\ & = 0 \\ & \mathsf{concrete \\ & v_NC = \frac{2 \cdot 1}{0} Pactor taking into account whether the anchorage is in cracked or non-cracked \\ & \mathsf{CEB [9.2.4] \\ & v_NL = 100.18 [kN] Design anchor resistance to concrete cone failure \\ & \mathsf{EN 1992-1:[8.4.2.(2)] \\ \\ & SPLITTING FAILURE \\ \mathsf{hef = 670 [nm] Effective anchorage depth \\ & Nekc^0 = 9.0[N^0 S/me^0 S^0 she^{1.5} \\ & Nekc^0 = 9.0[N^0 S/me^0 S^0 she^{1.5} \\ & Nekc^0 = 9.0[N^0 S/mm^0 S^0 she^{1.5} \\ & Nekc^0 = 69.002 (ER [9.2.5] \\ & ser,N = 1340 [nm] Critical width of the concrete cone \\ & CEB [9.2.5] \\ & ser,N = 1340 [nm] Critical avidth of the conc$	h _{ef} = 670 [mm]	Effective anchorage depth	CEB [9.2.4]
$\begin{split} & Nekc_0^2 = 698.02 [NN] Characteristic resistance of an anchor & CEB [9.2.4] \\ & cr_{N} = 1005 [mm] Critical width of the concrete cone & CEB [9.2.4] \\ & Ac_{N0} = 40401.00 [cm^2] Maximum \text{ area of concrete cone} & CEB [9.2.4] \\ & Ac_{N} = 15120.00 [cm^2] Actual area of concrete cone & CEB [9.2.4] \\ & Ac_{N} = 0.37 Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & c = 430 [mm] Minimum \text{ edge distance from an anchor} & CEB [9.2.4] \\ & v_{N} = 0.7 + 0.3^* c/c_{crN} \leq 1.0 \\ & \psi_{s,N} 0.8 Factor taking account the influence of edges of the concrete member on the distribution of \\ & \mathsf{CEB [9.2.4] \\ & \psi_{re,N} = 0.5 reator related to distribution of tensile forces acting on anchors \\ & \psi_{\mathsf{re,N} = 0.5 rhe[mm]/200 \leq 1.0 \\ & \psi_{re,N} = 1.0 GShell spalling factor & CEB [9.2.4] \\ & \psi_{ve,N} = 1.0 Gactor taking into account whether the anchorage is in cracked or non-cracked \\ & 0 \mathsf{concrete & CEB [9.2.4] \\ & \psi_{re,N} = 1.0 Gactor taking into account whether the anchorage is in cracked or non-cracked \\ & 0 \mathsf{concrete & CEB [9.2.4] \\ & Yme_{N} = 1.0 Gactor taking into account whether the anchorage is in cracked or non-cracked \\ & 0 \mathsf{concrete & CEB [9.2.4] \\ & F_{LRd,c} = 100.18 [kN] Design anchor resistance to concrete cone failure & \mathsf{EN 1992-1:[8.4.2.(2)] \\ & SPLITTING FAILURE \\ & hef = 670 [mm] Effective anchorage depth CEB [9.2.5] \\ & Nek_0^0 = 9.0[N^05/m^05^+he_{n^1.5} \\ & Nek_0^0 = 9.0[N^05/m^05^+he_{n^1.5} \\ & Nek_0^0 = 17956.00 [cm^2] Maximum area of concrete cone \\ & CEB [9.2.5] \\ & Ac_{N} = 1340 [mm] Critical width of the concrete cone \\ & \mathsf{CEB [9.2.5] \\ & Ac_{N} = 17956.00 [cm^2] Maximum area of concrete cone \\ & CEB [9.2.5] \\ & Ac_{N} = 17956.00 [cm^2]$	$N_{Rk,c^0} = 9.0[N^{0.5}/mm^{0.5}]*f_{ck^{0.5}}$	*h _{ef} ^{1.5}	
$\begin{split} & s_{cr,N} = & 2010 [mm] Critical width of the concrete cone & CEB [9.2.4] \\ & c_{cr,N} = & 1005 [mm] Critical edge distance & CEB [9.2.4] \\ & A_{c,N} = & 15120.00 [cm²] Actual area of concrete cone & CEB [9.2.4] \\ & w_{A,N} = & A_{c,N}/A_{c,N0} & CEB [9.2.4] \\ & w_{A,N} = & 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & w_{A,N} = & 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & w_{A,N} = & 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & w_{A,N} = & 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & w_{A,N} = & 0.7 + 0.3^*c/c_{cr,N} \le 1.0 & 0 \\ & w_{A,N} = & 0.8 \ Factor taking account the influence of edges of the concrete member on the distribution of & CEB \\ & = & 0 \ Factor related to distribution of tensile forces acting on anchors & [9.2.4] \\ & w_{er,N} = & 0.5 + he_{f}(mm]/200 \le 1.0 & 0 \\ & w_{re,N} = & 0.5 + he_{f}(mm]/200 \le 1.0 & 0 \\ & w_{uer,N} = & \frac{1.0}{0} \ Shell spalling factor & CEB [9.2.4] \\ & \psi_{uer,N} = & 1.0 & Factor taking into account whether the anchorage is in cracked or non-cracked & CEB [9.2.4] \\ & \psi_{uer,N} = & 1.0 & Factor taking into account whether the anchorage is in cracked or non-cracked & CEB [9.2.4] \\ & \psi_{uer,N} = & \frac{1.0}{0} \ Shell spalling factor & CEB [9.2.4] \\ & \psi_{uer,N} = & \frac{1.0}{6} \ Partial safety factor & CEB [9.2.4] \\ & \psi_{uer,N} = & \frac{1.0}{6} \ Partial safety factor & CEB [9.2.5] \\ & F_{LRd,c} = 100.18 [KN] \ Design anchor resistance to concrete cone failure & EN 1992-1:[8.4.2.(2)] \\ \\ & \textbf{SPLITTING FAILURE} & \\ & hef = & 6700 [mm] \ Critical width of the concrete cone & CEB [9.2.5] \\ & s_{e,N} = & 1340 [mm] \ Critical width of the concrete cone & CEB [9.2.5] \\ & s_{e,N} = & 1340 [mm] \ Critical width of the concrete cone & CEB [9.2.5] \\ & s_{e,N} = & 1340 [mm] \ Critical width of the concrete cone & CEB [9.2.5] \\ & s_{e,N} = & 1340 [mm] \ Critical width of the concrete cone & CEB [9.2.5] \\ & s_{e,N} = & 1340 [mm] \ Critical $	$N_{Rk,c}^{0} = 698.02 $ [kN]	Characteristic resistance of an anchor	CEB [9.2.4]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	s _{cr,N} = 2010 [mm]	Critical width of the concrete cone	CEB [9.2.4]
$A_{c,N0} = 40401.00$ [cm²]Maximum area of concrete coneCEB [9.2.4] $A_{c,N} = 15120.00$ [cm²]Actual area of concrete coneCEB [9.2.4] $\psi_{A,N} = A_{c,N}/A_{c,N0}$ $\psi_{A,N} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $\psi_{A,N} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $\psi_{a,N} = 0.7 + 0.3^*c/c_{cr.N} \le 1.0$ $\psi_{a,N} = 0.7 + 0.3^*c/c_{cr.N} \le 1.0$ CEB $\psi_{a,N} = 0.7 + 0.3^*c/c_{cr.N} \le 1.0$ $\psi_{a,N} = 0.7 + 0.3^*c/c_{cr.N} \le 1.0$ CEB $\psi_{a,N} = 0.5$ Factor taking account the influence of edges of the concrete member on the distribution ofCEB $= 3$ stresses in the concrete[9.2.4][9.2.4] $\psi_{re,N} = 1.0$ Factor related to distribution of tensile forces acting on anchors[9.2.4] $\psi_{re,N} = 1.0$ Shell spalling factorCEB [9.2.4] $\psi_{ucr,N} = 1.0$ Shell spalling factorCEB [9.2.5] $\chi_{n,k} = 0.5$ Shell spalling factorCEB [9.2.5] $\chi_{n,k} = 0.5$ Shell s	C _{cr,N} = 1005 [mm]	Critical edge distance	CEB [9.2.4]
$A_{c,N} = 15120.00$ [cm²]Actual area of concrete coneCEB [9.2.4] $\psi_{A,N} = A_{c,N}/A_{c,N0}$ $\psi_{A,N} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $c = 430$ [mm]Minimum edge distance from an anchorCEB [9.2.4] $\psi_{S,N} = 0.7 + 0.3*c/c_{cr,N} \le 1.0$ $\psi_{S,N} = 0.7 + 0.3*c/c_{cr,N} \le 1.0$ CEB $\psi_{S,N} = 0.5 + hel[mm]/200 \le 1.0$ [9.2.4] $\psi_{re,N} = 1 \cdot 0$ Factor related to distribution of tensile forces acting on anchorsCEB $= 0$ 0Shell spalling factorCEB [9.2.4] $\psi_{re,N} = 1 \cdot 0$ Factor related to distribution of tensile forces acting on anchors[9.2.4] $\psi_{re,N} = 1 \cdot 0$ Factor related to distribution of tensile forces acting on anchors[9.2.4] $\psi_{re,N} = 1 \cdot 0$ Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{uc,N} = 1 \cdot 0$ Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{uc,N} = 2 \cdot 1$ Partial safety factor[3.2.3.1] $F_{LRd,c} = Nak_c 0^* \psi_{A,N}^* \psi_{e,N}^* \psi_{uc,N} / \gamma_{Mc}$ EE $F_{LRd,c} = 100.18$ [KN]Design anchor resistance to concrete cone failureEN 1992-1:[8.4.2.(2)] SPLITTING FAILURE CEB [9.2.5]Scr.N = 1340[mm]Critical width of the concrete coneCEB [9.2.5] $N_{R,c} 0 = 698.02$ [KN]Design uplift capacityCEB [9.2.5]Scr.N = 1340[mm] $Critical edge distanceCEB [9.2.5]CEB [9.2.5]Scr.N = 17956.00[Cm²]Maximum area $	$A_{c,N0} = 40401.00 [cm^2]$	Maximum area of concrete cone	CEB [9.2.4]
$\begin{split} & \psi_{A,N} = A_{c,N}/A_{c,N} \\ & \psi_{A,N} = 0.37 & Factor related to anchor spacing and edge distance & CEB [9.2.4] \\ & c = 430 & [mm] & Minimum edge distance from an anchor & CEB [9.2.4] \\ & \psi_{s,N} = 0.7 + 0.3^{*}c/c_{cr,N} \leq 1.0 \\ & \psi_{s,N} = 0.8 & Factor taking account the influence of edges of the concrete member on the distribution of & CEB \\ & = 3 & stresses in the concrete & [9.2.4] \\ & \psi_{e,N} = 1.0 \\ & \psi_{re,N} = 0.5 + he[mm]/200 \leq 1.0 \\ & \psi_{re,N} = 1.0 \\ & \phi_{re,N} = 0 \\ & \phi_{re,N} = 1.0 \\ & \phi_{re,N} = 1.0 \\ & \phi_{re,N} = 0 \\ & \phi_{re,N} = 1.0 \\ & \phi_{re,N} = 0 \\ &$	$A_{c,N} = 15120.00 $ [cm ²]	Actual area of concrete cone	CEB [9.2.4]
$\psi_{A,N} = 0.37$ Factor related to anchor spacing and edge distanceCEB [9.2.4] $c = 430$ [mm]Minimum edge distance from an anchorCEB [9.2.4] $\psi_{S,N} = 0.7 + 0.3^{\circ}C/c_{CT,N} \le 1.0$ $\psi_{S,N} = 0.7 + 0.3^{\circ}C/c_{CT,N} \le 1.0$ CEB $\psi_{S,N} = 0.8$ Factor taking account the influence of edges of the concrete member on the distribution ofCEB $= 3$ stresses in the concrete[9.2.4] $\psi_{ec,N} = 0.5 + het[mm]/200 \le 1.0$ CEB [9.2.4] $\psi_{re,N} = 0.5 + het[mm]/200 \le 1.0$ $\psi_{re,N} = 1.0^{\circ}$ Shell spalling factorCEB [9.2.4] $\psi_{ucr,N} = 1.0^{\circ}$ Shell spalling factorCEB [9.2.4] $\psi_{ucr,N} = 1.0^{\circ}$ Shell spalling factorCEB [9.2.4] $\psi_{ucr,N} = \frac{2 \cdot 1}{6}$ Partial safety factorCEB [9.2.4] $\psi_{me} = \frac{2 \cdot 1}{6}$ Partial safety factorCEB [9.2.4] $\psi_{re,de} = 100.18$ [N] Design anchor resistance to concrete cone failureEN 1992-1:[8.4.2.(2)] SPLITTING FAILURE CEB [9.2.5] $h_{ef} = 670$ [mm] Effective anchorage depthCEB [9.2.6] $h_{ef} = 670$ [mm] Critical width of the concrete coneCEB [9.2.5] $N_{R,e}^{0} = 698.02$ [kN] Design uplift capacityCEB [9.2.5] $S_{r,N} = 1340$ [mm] Critical edge distanceCEB [9.2.5] $c_{r,N} = 670$ [mm] Critical edge distanceCEB [9.2.5] $c_{r,N} = 17956.00$ [cm²] Maximum area of concrete coneCEB [9.2.5] $c_{r,N} = 8195.00$ [cm²] Actual area of concrete coneCEB [9.2.5]	$\psi_{A,N} = A_{c,N}/A_{c,N0}$		
c =430 [mm] Minimum edge distance from an anchorCEB [9.2.4] $\psi_{s,N} = 0.7 + 0.3^*c/c_{cr,N} \le 1.0$ $\psi_{s,N} = 0.7 + 0.3^*c/c_{cr,N} \le 1.0$ [9.2.4] $\psi_{s,N} = 0.8$ Factor taking account the influence of edges of the concrete member on the distribution ofCEB $=$ 3 stresses in the concrete[9.2.4] $\psi_{er,N} = 1.0$ Factor related to distribution of tensile forces acting on anchors[9.2.4] $\psi_{re,N} = 0.5 + hef[mm]/200 \le 1.0$ $\psi_{re,N} = 1.0^{0}$ Shell spalling factorCEB [9.2.4] $\psi_{ur,N} = 1.0$ Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{ur,N} = 1.0$ Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{ur,N} = 1.0$ Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{ur,N} = 0.5 + hef[mm]/200 \le 1.0$ CEB[9.2.4] $\psi_{ur,N} = 0.5 + hef[mm]/200 \le 1.0$ CEB [9.2.4]CEB [9.2.4] $\psi_{ur,N} = 0.5 + hef[mm]/200 \le 1.0$ CEB [9.2.4]CEB [9.2.4] $\psi_{ur,N} = 0.5 + hef[mm]/200 \le 1.0$ CEB [9.2.4]CEB [9.2.4] $\psi_{ur,N} = 0.5 + hef[mm]/200 \le 1.0$ CEB [9.2.5]CEB [9.2.6] $\gamma_{Mc} = 2.1^{0}$ Grant account whether the anchorage is in cracked or non-crackedCEB [9.2.6] $\gamma_{Mc} = 2.1^{0}$ Partial safety factorCEB [9.2.5] $r_{Rk,c}^{0} = 9.0[N^{0.5}/m^{0.5}h_{ef}^{0.5}h_{ef}^{1.5}$ CEB [9.2.5] $N_{Rk,c}^{0} = 9.0[N^{0.5}/m^{0.5}h_{ef}^{1.5}$ CEB [9.2.5] $N_{Rk,c}^{0} = 6.90.2$ [KN]Design uplift capacity <td>$\psi_{A,N} = 0.37$ Fac</td> <td>ctor related to anchor spacing and edge distance</td> <td>CEB [9.2.4]</td>	$\psi_{A,N} = 0.37$ Fac	ctor related to anchor spacing and edge distance	CEB [9.2.4]
$\begin{split} \psi_{s,N} &= 0.7 + 0.3 \text{ *c/c}_{cr,N} \leq 1.0 \\ \psi_{s,N} &= 0.8 \text{ Factor taking account the influence of edges of the concrete member on the distribution of CEB \\ &= 3 \text{ stresses in the concrete} & [9.2.4] \\ \psi_{e,N} &= 1.0 \\ 0 \text{ Factor related to distribution of tensile forces acting on anchors} & [9.2.4] \\ \psi_{re,N} &= 0.5 + h_{ef}[mm]/200 \leq 1.0 \\ \psi_{re,N} &= 1.0 \\ 0 \text{ Shell spalling factor} & CEB [9.2.4] \\ \psi_{ucr,N} &= 1.0 \\ 0 \text{ Shell spalling factor} & CEB [9.2.4] \\ \psi_{ucr,N} &= 1.0 \\ 0 \text{ concrete} & CEB [9.2.4] \\ \psi_{ucr,N} &= 2.1 \\ 6 \\ Partial safety factor & CEB [9.2.4] \\ \gamma_{Mc} &= 2.1 \\ 6 \\ Partial safety factor & CEB [9.2.4] \\ \gamma_{Mc} &= 2.1 \\ 6 \\ Partial safety factor & CEB [9.2.4] \\ F_{t,Rd,c} &= 100.18 \\ \text{ [kN]} & \text{Design anchor resistance to concrete cone failure} & EN 1992-1:[8.4.2.(2)] \\ \hline \\ \textbf{SPLITTING FAILURE} \\ h_{ef} &= 670 \\ N_{Rk,c}^0 &= 9.0[N^{0.5}mm^{0.5}]^{*}f_{ck}^{0.5*}h_{ef}^{1.5} \\ N_{Rk,c}^0 &= 698.02 \\ \text{[kN]} & \text{Design uplift capacity} & CEB [9.2.5] \\ S_{r,N} &= 670 \\ C_{r,N} &= 17956.00 \\ C_{r,N}^2 & \text{Aximum area of concrete cone} \\ C_{r,N} &= CEB [9.2.5] \\ A_{c,N} &= 8195.00 \\ C_{r,N} &= CEB \\ C_{r,N} &= CEB \\ C_{r,N} &= 0 \\ C_{r,N} &= CEB \\ C_{r,N} &= 0 \\ C_{r,N} $	c = 430 [mm] Min	nimum edge distance from an anchor	CEB [9.2.4]
$\psi_{s,N}$ 0.8 Factor taking account the influence of edges of the concrete member on the distribution of 3 stresses in the concrete[9.2.4] [9.2.4] Vec.N 1 \cdot 0 0 Factor related to distribution of tensile forces acting on anchorsCEB [9.2.4] (9.2.4] Vre.N = 0.5 + hef[mm]/200 \leq 1.0 Vre.N = $1 \cdot 0$ 0 0 Shell spalling factorCEB [9.2.4] (9.2.4] CEB [9.2.4] Vuer,N 1 \cdot 0 Factor taking into account whether the anchorage is in cracked or non-cracked 0 concreteCEB [9.2.4] (9.2.4] CEB [9.2.4] CEB [9.2.4] Vuer,N 1 \cdot 0 Factor taking into account whether the anchorage is in cracked or non-cracked 0 concreteCEB [9.2.4] (9.2.4] CEB [9.2.4] CEB [9.2.4] CEB [9.2.4] CEB [9.2.4] $\gamma_{Mc} = \frac{2 \cdot 1}{6}$ Partial safety factorCEB [9.2.4] (3.2.3.1] Ft, rd,c = 100.18 [kN] Design anchor resistance to concrete cone failureCEB [9.2.4] EN 1992-1:[8.4.2.(2)]SPLITTING FAILURE hef = 670 [mm] Rkc_0^0 = 9.0[N ^{0.5} /mm ^{0.5}]*fck^{0.5*}hef^{1.5} NRkc_0^0 = 9.0[N ^{0.5} /mm ^{0.5}]*fck^{0.5*}hef^{1.5} NRkc_0^0 = 698.02 [kN] Design uplift capacityCEB [9.2.5] CEB [9.2.5] Cer,N = 1340 [mm] Critical width of the concrete cone CEB [9.2.5] Cer,N = 670 [mm] Critical edge distanceCEB [9.2.5] CEB [9.2.5] CEB [9.2.5] CEB [9.2.5] Cer,N = 670 [mm] Critical edge distance $\alpha_{c,N} = 8195.00$ [m²] Actual area of concrete coneCEB [9.2.5] CEB [9.2.5]	$\psi_{s,N} = 0.7 + 0.3 \text{*c/c}_{cr.N} \le 1.0$		
=3 stresses in the concrete[9.2.4] $\Psi_{ec,N}$ 1 · $\stackrel{0}{_{0}}$ Factor related to distribution of tensile forces acting on anchorsCEB= $\stackrel{0}{_{0}}$ Factor related to distribution of tensile forces acting on anchors[9.2.4] $\Psi_{re,N} = 0.5 + her[mm]/200 \le 1.0$ $\Psi_{re,N} = 1 \cdot \stackrel{0}{_{0}}$ Shell spalling factorCEB [9.2.4] $\Psi_{ucr,N}$ 1 · 0Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\Psi_{ucr,N}$ 1 · 0Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\Psi_{Mc} =$ $2 \cdot \frac{1}{6}$ Partial safety factorCEB $\gamma_{Mc} =$ $2 \cdot \frac{1}{6}$ Partial safety factorCEB $F_{LRd,c} = NRk_c ^0 \Psi A N^* \Psi s. N^* \Psi ec. N^* \Psi ucr, N/YMc$ EN 1992-11[8.4.2.(2)]SPLITTING FAILURE $her =$ 670 [mm]Effective anchorage depthCEB [9.2.5] $NRk_c ^0 = 9.0 [N^{0.5}/mm^{0.5}]^* f_{ck}^{0.5*} h_e^{1.5}$ CEB [9.2.5]Scr.N =1.340 $NRk_c ^0 = 698.02$ [kN]Design uplift capacityCEB [9.2.5] $Scr.N =$ 1.340[mm]Critical width of the concrete coneCEB [9.2.5] $Cr.N =$ 670 [mm]Critical edge distanceCEB [9.2.5] $A_{c,N} =$ 8195.00[cm²]Actual area of concrete coneCEB [9.2.5]	$\psi_{s,N}$ 0.8 Factor taking acc	count the influence of edges of the concrete member on the distri	bution of CEB
$\begin{array}{lll} \underbrace{\forall ec, N}_{0} & 1 \cdot \stackrel{0}{0} & \text{Factor related to distribution of tensile forces acting on anchors} & CEB \\ = & 0 & \text{Factor related to distribution of tensile forces acting on anchors} & [9.2.4] \\ \hline \psi_{re,N} = 0.5 + hef[mm]/200 \leq 1.0 & & & \\ \psi_{re,N} = & 1 \cdot \stackrel{0}{0} & \text{Shell spalling factor} & CEB [9.2.4] & & \\ \psi_{ucr,N} & 1 \cdot 0 & \text{Factor taking into account whether the anchorage is in cracked or non-cracked} & CEB [9.2.4] \\ \hline \psi_{ucr,N} & 1 \cdot 0 & \text{Factor taking into account whether the anchorage is in cracked or non-cracked} & CEB [9.2.4] \\ \hline \psi_{ucr,N} & = & 2 \cdot \frac{1}{6} & \text{Partial safety factor} & CEB \\ \hline \gamma_{Mc} & = & 2 \cdot \frac{1}{6} & \text{Partial safety factor} & CEB \\ \hline \gamma_{Mc} & = & 2 \cdot \frac{1}{6} & \text{Partial safety factor} & CEB \\ \hline \gamma_{Rk,c} & = & NRk_c o^{h} \psi_{A,N} * \psi_{e,N} * \psi_{ec,N} * \psi_{ucr,N} / \gamma_{Mc} \\ \hline F_{L,Rd,c} & = & NRk_c o^{h} \psi_{A,N} * \psi_{ec,N} * \psi_{ver,N} * \psi_{ucr,N} / \gamma_{Mc} \\ \hline F_{L,Rd,c} & = & 100 \cdot 18 & [kN] & Design anchor resistance to concrete cone failure & EN 1992-1:[8.4.2.(2)] \\ \hline SPLITTING FAILURE \\ h_{ef} & = & 670 & [mm] & Effective anchorage depth & CEB [9.2.5] \\ N_{Rk,c} & 0 & = 9.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{1.5} \\ \hline N_{Rk,c} & 0 & = 0.0[N^{0.5}/mm^{0.5}] * f_{ck}^{0.5*} h_{ef}^{$	= 3 stresses in the co	oncrete	[9.2.4]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\Psi_{ec,N} \stackrel{1 \cdot 0}{_{\circ}}$ Factor related to	distribution of tensile forces acting on anchors	CEB
$\begin{split} \psi_{re,N} &= 0.5 + h_{ef}[mm]/200 \leq 1.0 \\ \psi_{re,N} &= \frac{1 \cdot 0}{0} \text{ Shell spalling factor} & \text{CEB [9.2.4]} \\ \psi_{ucr,N} &= 1.0 \text{ Factor taking into account whether the anchorage is in cracked or non-cracked} \\ &= 0 \text{ concrete} & \text{CEB [9.2.4]} \\ \gamma_{Mc} &= \frac{2 \cdot 1}{6} \text{ Partial safety factor} & \text{CEB [9.2.4]} \\ \gamma_{Mc} &= \frac{2 \cdot 1}{6} \text{ Partial safety factor} & \text{CEB [9.2.4]} \\ r_{t,Rd,c} &= N_{Rk,c} \circ^{\bullet} \psi_{A,N}^{*} \psi_{ec,N}^{*} \psi_{re,N}^{*} \psi_{ucr,N} / \gamma_{Mc} \\ F_{t,Rd,c} &= 100 \cdot 18 & [kN] & \text{Design anchor resistance to concrete cone failure} & \text{EN 1992-1:[8.4.2.(2)]} \\ \hline \\ \textbf{SPLITTING FAILURE} \\ h_{ef} &= 670 & [mm] & \text{Effective anchorage depth} & \text{CEB [9.2.5]} \\ N_{Rk,c} \circ &= 9.0[N^{0.5}/mm^{0.5}]^* f_{ek} \circ^{5.8} h_{ef}^{1.5} \\ N_{Rk,c} \circ &= 698 \cdot 02 & [kN] & \text{Design uplift capacity} & \text{CEB [9.2.5]} \\ s_{cr,N} &= 1340 & [mm] & \text{Critical width of the concrete cone} & \text{CEB [9.2.5]} \\ c_{cr,N} &= 670 & [mm] & \text{Critical edge distance} & \text{CEB [9.2.5]} \\ A_{c,N0} &= 17956 \cdot 00 & [cm^2] & \text{Maximum area of concrete cone} & \text{CEB [9.2.5]} \\ A_{c,N} &= 8195 \cdot 00 & [cm^2] & \text{Actual area of concrete cone} & \text{CEB [9.2.5]} \\ \hline \end{cases}$	= 0	U U	[9.2.4]
$\psi_{re,N} = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ Shell spalling factorCEB [9.2.4] $\psi_{ucr,N}$ 1.0 Factor taking into account whether the anchorage is in cracked or non-crackedCEB [9.2.4] $\psi_{ucr,N} = \begin{bmatrix} 2 & 1 \\ 0 & concrete \end{bmatrix}$ Partial safety factorCEB $\gamma_{Mc} = \begin{bmatrix} 2 & 1 \\ 6 \end{bmatrix}$ Partial safety factorCEB $F_{t,Rd,c} = N_{Rk,c} \circ^{*} \psi_{A,N} * \psi_{ec,N} * \psi_{re,N} * \psi_{ucr,N} / \gamma_{Mc}$ EN 1992-1:[8.4.2.(2)] SPLITTING FAILURE EN 1992-1:[8.4.2.(2)] $h_{ef} = 670 $ [mm]Effective anchorage depthCEB [9.2.5] $N_{Rk,c} \circ = 9.0[N^{0.5}/mm^{0.5}]^* f_{ck}^{0.5*} h_{ef}^{1.5}$ CEB [9.2.5] $N_{Rk,c} \circ = 698.02 $ [kN]Design uplift capacityCEB [9.2.5] $s_{r,N} = 1340 $ [mm]Critical width of the concrete coneCEB [9.2.5] $c_{r,N} = 670 $ [mm]Critical edge distanceCEB [9.2.5] $A_{c,N} = 8195.00 $ [cm²]Maximum area of concrete coneCEB [9.2.5] $A_{c,N} = 8195.00 $ [cm²]Actual area of concrete coneCEB [9.2.5]	$\psi_{\rm re,N} = 0.5 + h_{\rm ef}[\rm mm]/200 \le 1$.0	
$\psi_{ucr,N}$ 1.0 Factor taking into account whether the anchorage is in cracked or non-cracked 0 concreteCEB [9.2.4] γ_{Mc} = $2 \cdot \frac{1}{6}$ Partial safety factorCEB [3.2.3.1] $F_{t,Rd,c}$ = N _{Rk,c} 0* $\psi_{A,N}$ * $\psi_{s,N}$ * $\psi_{re,N}$ * $\psi_{re,N}$ * $\psi_{ucr,N/\gamma_{Mc}}$ EN 1992-1:[8.4.2.(2)] SPLITTING FAILURE hef =670 [mm] Effective anchorage depthCEB [9.2.5]N _{Rk,c} 0 =9.0[N ^{0.5} /mm ^{0.5}]*f _{ck} ^{0.5*} h _{ef} ^{1.5} CEB [9.2.5]N _{Rk,c} 0 =698.02 [kN] Design uplift capacityCEB [9.2.5]scr,N =1340 [mm] Critical width of the concrete coneCEB [9.2.5]C _{r,N} =670 [mm] Critical edge distanceCEB [9.2.5]A _{c,N} =8195.00 [cm²] Actual area of concrete coneCEB [9.2.5]	$\psi_{re,N} = {\begin{array}{*{20}c} 1 \cdot {\begin{array}{*{20}c} 0 \\ 0 \end{array}}} Shell spalling f$	factor	CEB [9.2.4]
$\begin{split} & \gamma_{Mc} = \begin{array}{c} 2 \cdot \frac{1}{6} \text{ Partial safety factor} & & & & \text{CEB} \\ & & & & & & & & & & & & & & & & & & $	$\psi_{ucr,N}$ 1.0 Factor taking in = 0 concrete	nto account whether the anchorage is in cracked or non-cracked	CEB [9.2.4]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{Mc} = \frac{2 \cdot 1}{c}$ Partial safety factor	actor	CEB
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	F = N =	*	[3.2.3.1]
Ft_Rd_c = 100.10 [RN] Design anchor resistance to concrete cone failureEN 1992-1.[0.4.2.(2)]SPLITTING FAILURE $h_{ef} = 670$ [mm] Effective anchorage depthCEB [9.2.5] $N_{Rk,c}^0 = 9.0[N^{0.5}/mm^{0.5}]*f_{ck}^{0.5*}h_{ef}^{1.5}$ CEB [9.2.5] $N_{Rk,c}^0 = 698.02$ [kN] Design uplift capacityCEB [9.2.5] $s_{cr,N} = 1340$ [mm] Critical width of the concrete coneCEB [9.2.5] $C_{cr,N} = 670$ [mm] Critical edge distanceCEB [9.2.5] $A_{c,N0} = 17956.00$ [cm²] Maximum area of concrete coneCEB [9.2.5] $A_{c,N} = 8195.00$ [cm²] Actual area of concrete coneCEB [9.2.5]	Γ t,Rd,c - INRK,c ⁻ Ψ A,N Ψ s,N Ψ ec,N	N Yre,N Yucr,N/YMc	ENI 1002 1.10 / 2 (2)]
SPLITTING FAILURE $h_{ef} =$ 670 [mm]Effective anchorage depthCEB [9.2.5] $N_{Rk,c}^0 = 9.0[N^{0.5}/mm^{0.5}]*f_{ck}^{0.5*}h_{ef}^{1.5}$ CEB [9.2.5] $N_{Rk,c}^0 =$ 698.02 [kN]Design uplift capacityCEB [9.2.5] $s_{cr,N} =$ 1340[mm]Critical width of the concrete coneCEB [9.2.5] $c_{c,N} =$ 670 [mm]Critical edge distanceCEB [9.2.5] $A_{c,N0} =$ 17956.00 [cm²]Maximum area of concrete coneCEB [9.2.5] $A_{c,N} =$ 8195.00 [cm²]Actual area of concrete coneCEB [9.2.5]	Ft,Rd,c = 100.10 [KIN] Do	esign anchor resistance to concrete cone failure	EN 1992-1.[0.4.2.(2)]
SPETITING FAILURE h_{ef} =670 [mm]Effective anchorage depthCEB [9.2.5] $N_{Rk,c}^0$ =9.0[N ^{0.5} /mm ^{0.5}]*f _{ck} ^{0.5*} h _{ef} ^{1.5} CEB [9.2.5] $N_{Rk,c}^0$ =698.02 [kN]Design uplift capacityCEB [9.2.5] $s_{cr,N}$ =1340 [mm]Critical width of the concrete coneCEB [9.2.5] $c_{cr,N}$ =670 [mm]Critical edge distanceCEB [9.2.5] $A_{c,N0}$ =17956.00 [cm²]Maximum area of concrete coneCEB [9.2.5] $A_{c,N}$ =8195.00 [cm²]Actual area of concrete coneCEB [9.2.5]			
$\begin{split} & N_{Rk,c}^{ner} = 0.0[N^{0.5}/mm^{0.5}]^*f_{ck}^{0.5*}h_{ef}^{1.5} \\ & N_{Rk,c}^{0} = 9.0[N^{0.5}/mm^{0.5}]^*f_{ck}^{0.5*}h_{ef}^{1.5} \\ & N_{Rk,c}^{0} = 698.02 [kN] Design uplift capacity & CEB \left[9.2.5\right] \\ & s_{cr,N} = 1340 [mm] Critical width of the concrete cone & CEB \left[9.2.5\right] \\ & c_{cr,N} = 670 [mm] Critical edge distance & CEB \left[9.2.5\right] \\ & A_{c,N} = 17956.00 [cm^2] Maximum area of concrete cone & CEB \left[9.2.5\right] \\ & A_{c,N} = 8195.00 [cm^2] Actual area of concrete cone & CEB \left[9.2.5\right] \\ & CEB \left[9.2.$	b = 670 [mm]	Effective anchorage donth	
$\begin{split} &N_{Rk,c}{}^{0} = \begin{array}{c} 0.98, 0.02 \\ s_{cr,N}{}^{n} = \begin{array}{c} 1340 \\ 1340 \end{array} \begin{bmatrix} lkN \end{bmatrix} \begin{array}{c} Design \ uplift \ capacity \\ critical \ width \ of \ the \ concrete \ cone \\ CEB \ [9.2.5] \\ A_{c,N} = \begin{array}{c} 17956.00 \\ 8195.00 \end{array} \begin{bmatrix} cm^2 \end{bmatrix} \begin{array}{c} Maximum \ area \ of \ concrete \ cone \\ CEB \ [9.2.5] \\ $	$N_{\rm DL} = 0 = 0 \Omega[N]0.5/mm0.51*f . 0.5i$	בווכטוויס מוטוטומצים טכµוו ∗h. ₁1.5	OED [9.2.3]
$ \begin{array}{c} \text{Scr,N} = & 1340 \\ \text{Cr,N} = & 670 \\ \text{A}_{c,N} = & 17956.00 \\ \text{A}_{c,N} = & 8195.00 \\ \text{Cr}^2 \end{array} \begin{array}{c} \text{Product of the concrete cone} \\ \text{Critical edge distance} \\ Critical edge distance$	$N_{\rm Dkc}^0 = 698.02$ [kNI]	Design unlift capacity	CER [0 2 5]
$c_{c,N} =$ 670[mm]Critical edge distanceCEB [9.2.5] $A_{c,N0} =$ 17956.00[cm²]Maximum area of concrete coneCEB [9.2.5] $A_{c,N} =$ 8195.00[cm²]Actual area of concrete coneCEB [9.2.5]	$S_{cr,N} = 1340$ [mm]	Critical width of the concrete cone	CFR [0 2 5]
$A_{c,N0} = 17956.00$ [cm²]Maximum area of concrete coneCEB [9.2.5] $A_{c,N} = 8195.00$ [cm²]Actual area of concrete coneCEB [9.2.5]	$C_{cr,N} = 670$ [mm]	Critical edge distance	CFR [9.2.5]
$A_{c,N} = 8195.00$ [cm ²] Actual area of concrete cone CEB [9.2.5]	$A_{c,N0} = 17956.00$ [cm ²]	Maximum area of concrete cone	CFR [9.2.5]
	$A_{c,N} = 8195.00$ [cm ²]	Actual area of concrete cone	CEB [9.2.5]
$WAN = A_{C}N/A_{C}NO$			
--	----------------		
$\psi_{A,N} = 0.46$ Eactor related to anchor spacing and edge distance	CEB [9 2 5]		
c = 430 [mm] Minimum edge distance from an anchor	CEB [9 2 5]		
$w_{eN} = 0.7 + 0.3^{*} c/c_{erN} < 1.0$	010 [0.1.0]		
$y_{s,N} = 0.8$ Eactor taking account the influence of edges of the concrete member on the distribution of	of CEB		
= 9 stresses in the concrete	[9.2.5]		
	CEB		
= 0 Factor related to distribution of tensile forces acting on anchors	[9.2.5]		
$\psi_{re,N} = 0.5 + h_{ef}[mm]/200 \le 1.0$			
$\psi_{re,N} = 1.00$ Shell spalling factor	CEB [9.2.5]		
$\psi_{ucr,N} = 1.00$ Factor taking into account whether the anchorage is in cracked or non-cracked concre	te CEB [9.2.5]		
$\psi_{h,N} = (h/(2^*h_{ef}))^{2/3} \le 1.2$			
$\psi_{h,N}$ = 0.82 Coeff. related to the foundation height	CEB [9.2.5]		
γ _{M,sp} = 2.16 Partial safety factor	CEB [3.2.3.1]		
F _{t,Rd,sp} = N _{Rk,c} ⁰ *ψ _{A,N} *ψ _{s,N} *ψ _{ec,N} *ψ _{re,N} *ψ _{ucr,N} *ψ _{h,N} /γ _{M,sp}			
$F_{t,Rd,sp} = 108.30$ [kN] Design anchor resistance to splitting of concrete	CEB [9.2.5]		
TENSILE DESISTANCE OF AN ANCHOR			
$F_{t,Rd} = \Pi \Pi (F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$			
BENDING OF THE BASE PLATE			
Bending moment Mj,Ed,y			
I _{eff,1} = 353 [mm] Effective length for a single bolt row for mode 1	[6.2.6.5]		
leff,2 = 353 [mm] Effective length for a single bolt row for mode 2	[6.2.6.5]		
m = 65 [mm] Distance of a bolt from the stiffening edge	[6.2.6.5]		
$M_{pl,1,Rd} = 15.17$ [kN*m] Plastic resistance of a plate for mode 1	[6.2.4]		
$M_{pl,2,Rd} = 15.17$ [kN*m] Plastic resistance of a plate for mode 2	[6.2.4]		
F _{T,1,Rd} = 936.09 [kN] Resistance of a plate for mode 1	[6.2.4]		
FT,2,Rd = 319.34 [kN] Resistance of a plate for mode 2	[6.2.4]		
F _{T,3,Rd} = 200.37 [kN] Resistance of a plate for mode 3	[6.2.4]		
$F_{t,pl,Rd,y} = min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd})$			
F _{t,pl,Rd,y} = 200.37 [kN] Tension resistance of a plate	[6.2.4]		
Ponding moment Mi Ed a			
benuing moment Mj, cu, z	16 2 6 51		
$left_1 = 353$ [mm] Effective length for a single bolt row for mode 2	[0.2.0.3]		
m = 65 [mm] Distance of a bolt from the stiffening edge	[0.2.0.5]		
$M_{\rm HAD} = 15.17$ [kN*m] Plastic resistance of a plate for mode 1	[0.2.0.3]		
$M_{pl,1,Rd} = 15.17$ [kN*m] Plastic resistance of a plate for mode 2	[0.2.4]		
$F_{TAPA} = 936.09$ [kN] Resistance of a plate for mode 1	[6.2.4]		
$F_{1,1,Rd} = 319.34$ [kN] Resistance of a plate for mode 2	[6 2 4]		
$F_{1,2,Rd} = 200 \ 37 \ [kN]$ Resistance of a plate for mode 3	[6 2 4]		
$F_{1,3,R0} = 200.007$ [RN] Resistance of a plate for mode of	[0.2.4]		
$F_{t pl Rd z} = 200.37$ [kN] Tension resistance of a plate	[6.2.4]		
	[0.2.1]		
RESISTANCES OF SPREAD FOOTING IN THE TENSION ZONE			
$F_{T,Rd,y} = F_{t,pl,Rd,y}$			
$F_{T,Rd,y} = 200.37$ [kN] Resistance of a column base in the tension zone	[6.2.8.3]		
$F_{T,Rd,z} = F_{t,pl,Rd,z}$	10 0 0 0		
$F_{T,Rd,z} = 200.37$ [KN] Resistance of a column base in the tension zone	[6.2.8.3]		

CONNECTION CAPACITY CHECK

N _{j,Ed} / N _{j,Rd} ≤ 1,0 (6.24)	0.01 < 1.00	verified	(0.01)
--	-------------	----------	--------

$e_y =$ $z_{c,y} =$ $z_{t,y} =$ $M_{j,Rd,y} =$	1920 227 270 112.92	[mm] [mm] [mm] [kN*m]	Axial force eccentricity Lever arm $F_{C,Rd,y}$ Lever arm $F_{T,Rd,y}$ Connection resistance for bending		[6.2.8.3] [6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3]
M _{j,Ed,y} / M	_{j,Rd,y} ≤ 1,0	(6.23)	0.97 < 1.00	verified	(0.97)
$e_z =$ $Z_{c,z} =$ $Z_{t,z} =$ $M_{j,Rd,z} =$	5 160 75 25.47	[mm] [mm] [mm] [kN*m]	Axial force eccentricity Lever arm $F_{C,Rd,z}$ Lever arm $F_{T,Rd,z}$ Connection resistance for bending		[6.2.8.3] [6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3]
Mj,Ed,z / M	_{j,Rd,z} ≤ 1,0	(6.23)	0.01 < 1.00	verified	(0.01)
M _{j,Ed,y} / M	j,Rd,y + Mj,E	a,z / Mj,Rd,z	z≤1,0 0.98 < 1.00	verified	(0.98)

<u>Shear</u>

BEARING PRESS Shear force Vj,Ec	SURE OF / I,y	AN ANCHOR BOLT ONTO THE BASE PLATE					
$\alpha_{d,y} = 2.14$	d,y = 2.14 Coeff. taking account of the bolt position - in the direction of shear [Table 3.4						
$\alpha_{b,y} = 1.00$	$\chi_{b,v} = 1.00$ Coeff. for resistance calculation $F_{1,vb,Rd}$						
$k_{1,y} = 2.50$	Coeff. taki	ng account of the bolt position - perpendicularly to the direction of shear	r [Table 3.4]				
$F_{1,vb,Rd,y} = k_{1,y}^* \alpha_{b,y}^*$	* f up*d*t _p / γ	M2					
$F_{1,vb,Rd,y} = 709.50$	[kN] Re	esistance of an anchor bolt for bearing pressure onto the base plate	[6.2.2.(7)]				
Shear force Vj,Ed	l,z						
$\alpha_{d,z} = 0.86$	Coeff. taki	ng account of the bolt position - in the direction of shear	[Table 3.4]				
$\alpha_{b,z} = 0.86$	Coeff. for	resistance calculation F _{1,vb,Rd}	[Table 3.4]				
$k_{1,z} = 2.50$	Coeff. taki	ng account of the bolt position - perpendicularly to the direction of shear	r [Table 3.4]				
$F_{1,vb,Rd,z} = k_{1,z}^* \alpha_{b,z}^*$	* f up*d*t _p / γ	M2					
$F_{1,vb,Rd,z} = 608.14$	[kN] Re	esistance of an anchor bolt for bearing pressure onto the base plate	[6.2.2.(7)]				
SHEAR OF AN AI	NCHOR B	OLT					
α _b = 0.30		Coeff. for resistance calculation F _{2,vb,Rd}	[6.2.2.(7)]				
Avb = 8.55	[cm ²]	Area of bolt section	[6.2.2.(7)]				
f _{ub} = 600.00	[MPa]	Tensile strength of the anchor material	[6.2.2.(7)]				
γ M2 = 1.25		Partial safety factor	[6.2.2.(7)]				
$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb}$	ум2						
$F_{2,vb,Rd} = 121.52$	[kN]	Shear resistance of a bolt - without lever arm	[6.2.2.(7)]				
α _M = 2.00	Facto	or related to the fastening of an anchor in the foundation	CEB [9.3.2.2]				
M _{Rk,s} = 1.78 [kN	*m] Chara	acteristic bending resistance of an anchor	CEB [9.3.2.2]				
l _{sm} = 59 [m	m] Leve	r arm length	CEB [9.3.2.2]				
γMs = 1.20	Partia	al safety factor	CEB [3.2.3.2]				
$F_{v,Rd,sm} = \alpha_M M_{Rk,s}$	/(I _{sm} *γ _{Ms})						
$F_{v,Rd,sm} = 50.30$	[kN]	Shear resistance of a bolt - with lever arm	CEB [9.3.1]				
CONCRETE PRY	-OUT FAIL	LURE					
N _{Rk,c} = 216.40	[kN]	Design uplift capacity	CEB [9.2.4]				
k ₃ = 2.00		Factor related to the anchor length	CEB [9.3.3]				
γ _{Mc} = 2.16		Partial safety factor	CEB [3.2.3.1]				
$F_{v,Rd,cp} = k_3 N_{Rk,c}/\gamma$	Мс						
$F_{v,Rd,cp} = 200.37$	[kN]	Concrete resistance for pry-out failure	CEB [9.3.1]				

CONCRETE EDGE FAILURE

Shear	force	Vj,	Ed,y
-------	-------	-----	------

$V_{Rk,c,y}$ 1195. [k 0 = 91 N	Characteristic resistance of an anchor	CEB [9.3.4.(a)]					
ΨA,V,y 0.14	Factor related to anchor spacing and edge distance	CEB [9.3.4]					
Ψh,V,y 1.21	Factor related to the foundation thickness	CEB [9.3.4.(c)]					
Ψs,V,y 0.77 =	Factor related to the influence of edges parallel to the shear load direction	CEB [9.3.4.(d)]					
Ψec,V,y 1.00 =	Factor taking account a group effect when different shear loads are acting on the individual anchors in a group	[9.3.4.(e)]					
Ψ _{α,V,y} 1.00	Factor related to the angle at which the shear load is applied	CEB [9.3.4.(f)]					
Ψucr,V,y 1.00 =	Factor related to the type of edge reinforcement used	CEB [9.3.4.(g)]					
γMc = 2.16	Partial safety factor	CEB [3.2.3.1]					
$F_{v,Rd,c,y} = V_{Rk,c,y}^{0}$ $F_{v,Rd,c,y} = 71.5$	⁽ ΨΑ,V,y [*] Ψh,V,y [*] Ψs,V,y [*] Ψec,V,y [*] Ψα,V,y [*] Ψucr,V,y/γMc 8 [kN] Concrete resistance for edge failure	CEB [9.3.1]					
Shear force Vj,I	Ed,z						
$V_{Rk,c,z}$ 264. [k 0 = 76 N]	Characteristic resistance of an anchor	CEB [9.3.4.(a)]					
ΨA,V,z 1.00	Factor related to anchor spacing and edge distance	CEB [9.3.4]					
Ψh,V,z 1.00 =	Factor related to the foundation thickness	CEB [9.3.4.(c)]					
Ψs,V,z 1.00 =	Factor related to the influence of edges parallel to the shear load direction	CEB [9.3.4.(d)]					
Ψec,V,z 1.00 =	Factor taking account a group effect when different shear loads are acting on the individual anchors in a group	CEB [9.3.4.(e)]					
Ψα,V,z 1.00	Factor related to the angle at which the shear load is applied	CEB [9.3.4.(f)]					
Ψucr,V,z 1.00	Factor related to the type of edge reinforcement used	CEB [9.3.4.(g)]					
γMc = 2.16	Partial safety factor	(3.2.3.1]					
$F_{v,Rd,c,z} = V_{Rk,c,z}^{0.7}$ $F_{v,Rd,c,z} = 122.5$	^f ΨΑ,V,z [*] Ψh,V,z [*] Ψs,V,z [*] Ψec,V,z [*] Ψα,V,z [*] Ψucr,V,z/γMc 7 [kN] Concrete resistance for edge failure	CEB [9.3.1]					
SPLITTING RES	SISTANCE						
$C_{f,d} = 0.30$ $N_{c,Ed} = 57.13$	Coeff. of friction between the base plate and concrete [kN] Compressive force	[6.2.2.(6)] [6.2.2.(6)]					
$F_{f,Rd} = C_{f,d} N_{c,Ed}$ $F_{f,Rd} = 17.1$	4 [kN] Slip resistance	[6.2.2.(6)]					
BEARING PRES	SSURE OF THE WEDGE ONTO CONCRETE *bwy*f _{ck} /γ _c						
$F_{v,Rd,wg,y} = 186.6$	$F_{v,Rd,wg,y} = 186.67$ [kN] Resistance for bearing pressure of the wedge onto concrete						
$F_{v,Rd,wg,z} = 1.4^{*}I_w^{*}b_{wz}^{*}f_{ck}/\gamma_c$ $F_{v,Rd,wg,z} = 102.67$ [kN] Resistance for bearing pressure of the wedge onto concrete							
SHEAR CHECK							
Viodu = n⊧*min/F	Autorian Fautorian Fundam Fundam) + Fundamen + Fend						

V _{j,Rd,y} = n _b *min(F _{1,vb,Rd,y} , F _{2,vb,Rd} , F _{v,Rd,sm} , F _{v,Rd,cp} , F _{v,Rd,cy}) + F _{v,Rd,wg,y} + F _{f,Rd}					
$V_{j,Rd,y} = 4$	04.99	[kN]	Connection resistance for shear		CEB [9.3.1]
V _{j,Ed,y} / V _{j,Rd}	_{l,y} ≤ 1,0		0.00 < 1.00	verified	(0.00)

V _{j,Rd,z} =	n _b *min(F _{1,vb} ,	Rd,z, F2,vk	o,Rd, Fv,Rd,sm, Fv,Rd	,cp, Fv,R	d,c,z) •	+ F _{v,Rd,wg,z} + F _{f,Rd}		
V _{j,Rd,z} =	320.99	[kN]	Connection res	istance	for s	shear		CEB [9.3.1]
V _{j,Ed,z} /	V _{j,Rd,z} ≤ 1,0			0.14	< 1	.00	verified	(0.14)
V _{j,Ed,y} /	V _{j,Rd,y} + V _{j,Ed,z}	/ V _{j,Rd,z}	≤ 1,0	0.14	< 1	.00	verified	(0.14)

STIFFENER CHECK

Stiffener parallel to the web (along the extension of the column web)

M1 =	5.84	[kN*m]	Bending moment acting on a stiffener			
Q1 =	64.87	[kN]	Shear force acting on a stiffener			
z _s =	136	[mm]	Location of the neutral axis (from the plate base)			
l _s =	17325.58	[cm ⁴]	Moment of inertia of a stiffener			
σ _d =	3.75	[MPa]	Normal stress on the contact surface between stiffener and pla	ate E	EN 1993-1-1:[[6.2.1.(5)]
σg =	8.38	[MPa]	Normal stress in upper fibers	E	EN 1993-1-1:[6.2.1.(5)]
τ =	9.01	[MPa]	Tangent stress in a stiffener	E	EN 1993-1-1:[6.2.1.(5)]
σz =	16.05	[MPa]	Equivalent stress on the contact surface between stiffener and	l plate E	EN 1993-1-1:[6.2.1.(5)]
max	(σ _g , τ / (0.58	8), σ _z)	$/(f_{yp}/\gamma_{M0}) \le 1.0(6.1)$ 0.06 < 1.00	verified		(0.06)
Trap	ezoid plate	paral	lel to the column web			

Trapezoiu	plate	paraner	to the	column	WCD

M1 =	5.84 [kN*m]	Bending moment act	ing on a stiffener		
Q1 =	64.87 [kN]	Shear force acting or	n a stiffener		
z _s =	117 [mm]	Location of the neutr	al axis (from the plate bas	e)	
I s = 2	0071.92 [cm ⁴]	Moment of inertia of	a stiffener		
σ_d =	2.66 [MPa]	Normal stress on the	contact surface between	stiffener and plate	EN 1993-1-1:[6.2.1.(5)]
σg =	7.81 [MPa]	Normal stress in upp	er fibers		EN 1993-1-1:[6.2.1.(5)]
τ =	9.01 [MPa]	Tangent stress in a s	tiffener		EN 1993-1-1:[6.2.1.(5)]
σz =	15.83 [MPa]	Equivalent stress on	the contact surface betwe	en stiffener and plate	EN 1993-1-1:[6.2.1.(5)]
max (d	σg, τ / (0.58), σz)	$(f_{yp}/\gamma_{M0}) \le 1.0 \ (6.1)$	0.06 < 1.00	verified	(0.06)

WELDS BETWEEN THE COLUMN AND THE BASE PLATE

σ ⊥ =	14.82	[MPa]	Normal stress in a weld		[4.5.3.(7)]
τ_ =	14.82	[MPa]	Perpendicular tangent stress		[4.5.3.(7)]
τ _{yII} =	0.08	[MPa]	Tangent stress parallel to V _{j,Ed,y}		[4.5.3.(7)]
τ _{zII} =	2.18	[MPa]	Tangent stress parallel to $V_{j,Ed,z}$		[4.5.3.(7)]
βw =	0.85		Resistance-dependent coefficient		[4.5.3.(7)]
σ_{\perp} / (0.9	9*f _u /γ _{M2})) ≤ 1	.0 (4.1)	0.05 < 1.00	verified	(0.05)
√(σ _⊥ ² +	3.0 (τ _{yll} ² + τ	2)) / (fu/(βw*γм₂))) ≤ 1.0 (4.1) 0.07 < 1.00	verified	(0.07)
√(σ _⊥ ² +	3.0 (τ _{zll} ² + τ	2)) / (fu/(βw*γм2))) ≤ 1.0 (4.1) 0.06 < 1.00	verified	(0.06)

VERTICAL WELDS OF STIFFENERS

Stiffener parallel to the web (along the extension of the column web)

σ_{\perp} = 23.89 [MPa] Normal stress in a weld	[4.5.3.(7)]
τ_{\perp} = 23.89 [MPa] Perpendicular tangent stress	[4.5.3.(7)]
τ _{II} = 22.52 [MPa] Parallel tangent stress	[4.5.3.(7)]
σ_z = 61.69 [MPa] Total equivalent stress	[4.5.3.(7)]
$\beta_W = 0.85$ Resistance-dependent coefficient	[4.5.3.(7)]
$\max (\sigma_{\perp}, \tau_{II} * \sqrt{3}, \sigma_{z}) / (f_{u}/(\beta_{W}*\gamma_{M2})) \le 1.0 (4.1) 0.15 < 1.00 $ verified	(0.15)

Trapezoid plate parallel to the column web

σ ⊥ =	0.00	[MPa]	Normal stress in a weld		[4.5.3.(7)]
τ_{\perp} =	0.00	[MPa]	Perpendicular tangent stress		[4.5.3.(7)]
τιι =	39.66	[MPa]	Parallel tangent stress		[4.5.3.(7)]
σ _z =	0.00	[MPa]	Total equivalent stress		[4.5.3.(7)]
βw =	0.85		Resistance-dependent coefficient		[4.5.3.(7)]
max (σ⊥,	, τιι * √3, σz) / (fu/(βw	*γ _{M2})) ≤ 1.0 (4.1) 0.17 < 1.00	verified	(0.17)

TRANSVERSAL WELDS OF STIFFENERS

Stiffener parallel to the web (along the extension of the column web)

				,	
σ⊥ =	31.85	[MPa]	Normal stress in a weld		[4.5.3.(7)]
τ_ =	31.85	[MPa]	Perpendicular tangent stress		[4.5.3.(7)]
τιι =	23.25	[MPa]	Parallel tangent stress		[4.5.3.(7)]
σ _z =	75.37	[MPa]	Total equivalent stress		[4.5.3.(7)]
βw =	0.85		Resistance-dependent coefficient		[4.5.3.(7)]
max (σ⊥	_, τ _{II} * √3, σ _z) / (f _u /(βw	*γ _{M2})) ≤ 1.0 (4.1) 0.19 < 1.00	verified	(0.19)

Trapezoid plate parallel to the column web

σ ⊥ =	31.85	[MPa]	Normal stress in a weld		[4.5.3.(7)]
τ_{\perp} =	31.85	[MPa]	Perpendicular tangent stress		[4.5.3.(7)]
τιι =	25.82	[MPa]	Parallel tangent stress		[4.5.3.(7)]
σz =	77.84	[MPa]	Total equivalent stress		[4.5.3.(7)]
βw =	0.85		Resistance-dependent coefficient		[4.5.3.(7)]
max (σ⊥	., τιι * √3, σz) / (fu/(βw	*γм2)) ≤ 1.0 (4.1) 0.19 < 1.00	verified	(0.19)

CONNECTION STIFFNESS

Bending moment Mj,Ed,y

b _{eff} =	129 [mm]	Effective	e width of the bearing pressure zone under the flange	[6.2.5.(3)]
l _{eff} =	406 [mm]	Effective	e length of the bearing pressure zone under the flange	[6.2.5.(3)]
k _{13,y} =	Ec*√(beff*leff))/(1.275*E	Ξ)	
k _{13,y} =	26	[mm]	Stiffness coeff. of compressed concrete	[Table 6.11]
l _{eff} =	353	[mm]	Effective length for a single bolt row for mode 2	[6.2.6.5]
m =	65	[mm]	Distance of a bolt from the stiffening edge	[6.2.6.5]
k _{15,y} =	0.425*l _{eff} *t _p 3	³/(m³)		
k _{15,y} =	9 [n	nm] Stif	fness coeff. of the base plate subjected to tension	[Table 6.11]
L _b =	346	[mm]	Effective anchorage depth	[Table 6.11]
$k_{16,y} = k_{16,y} =$	1.0 Ab/Lb 3	[mm]	Stiffness coeff. of an anchor subjected to tension	[Table 6.11]

$\lambda_{0,y} = 0.41$ Column slenderness	[5.2.2.5.(2)]
S _{j,ini,y} = 44566.20 [kN*m] Initial rotational stiffness	[Table 6.12]
S _{j,rig,y} = 494761.91 [kN*m] Stiffness of a rigid connection	[5.2.2.5]
Sj,ini,y < Sj,rig,y SEMI-RIGID	[5.2.2.5.(2)]
Bending moment Mj,Ed,z $k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
k _{13,z} = 34 [mm] Stiffness coeff. of compressed concrete	[Table 6.11]
l_{eff} = 353 [mm] Effective length for a single bolt row for mode 2 m = 65 [mm] Distance of a bolt from the stiffening edge $k_{15.z} = 0.425^{*} l_{eff} * t_{o}^{3}/(m^{3})$	[6.2.6.5] [6.2.6.5]
$k_{15,z} = 9$ [mm] Stiffness coeff. of the base plate subjected to tension	[Table 6.11]
L_b = 346 [mm] Effective anchorage depth $k_{16,z}$ = 1.6*A _b /L _b	[Table 6.11]
$k_{16,z}$ = 3 [mm] Stiffness coeff. of an anchor subjected to tension	[Table 6.11]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[5.2.2.5.(2)] [6.3.1.(4)] [5.2.2.5] [5.2.2.5.(2)]

WEAKEST COMPONENT:

FOUNDATION - CONCRETE CONE PULL-OUT FAILURE

<u>ΚΕΦΑΛΑΙΟ 8: ΑΠΟΤΙΜΗΣΗ ΑΝΤΟΧΗΣ ΜΕ ΤΗ ΜΕΘΟΔΟ</u> <u>PUSHOVER</u>

8.1 ΓΕΝΙΚΑ

Όλοι οι σύγχρονοι κανονισμοί, όπως ο Ευρωπαϊκός κανονισμός για τον αντισεισμικό σχεδιασμό των κατασκευών (Ευρωκώδικας 8, 2004), τα πρότυπα του Αμερικάνικου συλλόγου πολιτικών μηχανικών για τη σεισμική αποκατάσταση υφιστάμενων κατασκευών (ASCE, 2007) και ο Ελληνικός κανονισμός επεμβάσεων (KAN.ΕΠΕ, 2012) προτείνουν ότι η διαθέσιμη πλαστιμότητα μιας κατασκευής θα πρέπει να προσδιορίζεται μέσω μιας στατικής, ανελαστικής ανάλυσης Pushover.

Η προτίμηση των κανονισμών στην ανάλυση Pushover αποδίδεται στο συνδυασμό της ακριβέστερης προσέγγισης της συμπεριφοράς των μελών μέσω της ενσωμάτωσης μηγραμμικών προσομοιωμάτων των υλικών, ενώ η σεισμική ένταση εκφράζεται απλά μέσω μίας αυξανόμενης οριζόντιας στατικής φόρτισης. Η οριζόντια φόρτιση κατανέμεται ανάλογα με τις αδρανειακές δυνάμεις και αυξάνεται σταδιακά μέχρι την κατάρρευση του δομήματος. Ως κατάρρευση ορίζεται η δημιουργία πλαστικού μηχανισμού, ή η αδυναμία του φορέα να αναλάβει τα κατακόρυφα φορτία βαρύτητας. Οι προκύπτουσες παραμορφώσεις της κατασκευής συγκρίνονται έπειτα με τα όρια παραμόρφωσης που ορίζουν οι στάθμες επιτελεστικότητας.

Η χρήση της μεθόδου έχει μια σειρά στόχων:

- Τη δημιουργία της καμπύλης ικανότητας της κατασκευής, η οποία εκφράζει τη μηγραμμική σχέση μεταξύ του επιβαλλόμενου οριζόντιου φορτίου και της μετατόπισης κορυφής. Η καμπύλη αυτή αποτελεί τη βάση για όλους τους απαιτούμενους ελέγχους ικανοποίησης των κριτηρίων επιτελεστικότητας.
- Την τεκμηρίωση της ύπαρξης, ή μη επαρκούς υπεραντοχής στο κτίριο (λόγος α_u/α₁).
- Την εποπτεία της συμπεριφοράς των μελών της κατασκευής ως προς τη σειρά και τα σημεία εμφάνισης των πλαστικών αρθρώσεων. Επιτυγχάνεται με αυτόν τον τρόπο η αποτύπωση της κατανομής των ζημιών στην κατασκευή και γίνεται κατανοητός ο μηχανισμός απορρόφησης ενέργειας καθώς και ο έλεγχος σχεδιαστικών απαιτήσεων, όπως ο ικανοτικός σχεδιασμός ισχυρού υποστυλώματος-ασθενούς δοκού.

Η μη γραμμική ανάλυση υπερέχει της κλασικής ελαστικής καθώς παρουσιάζει τα ακόλουθα πλεονεκτήματα.

- Είναι πιο ακριβής διότι δεν βασίζεται μόνο στη δυσκαμψία των μελών, αλλά συνεκτιμά και την αντοχή τους. Επίσης, καθιστά δυνατό τον έλεγχο της δυνατότητας παραμόρφωσης όπως αυτή διαμορφώνεται βάσει π.χ. της περίσφιγξης και της λεπτομέρειας όπλισης.
- Εξασφαλίζεται η εποπτεία κατανομής των βλαβών στον φορέα.
- Γίνεται απαλλαγή από ικανοτικά προσομοιώματα.
- Μπορεί να ελεγχθεί η επάρκεια του φορέα για πολλές επιτελεστικότητες ταυτόχρονα (Άμεση χρήση, Προστασία ζωής, Αποφυγή κατάρρευσης).
- Παρέχει πληροφόρηση σχετικά με την μορφή της δομικής ανεπάρκειας και βοηθάει να σχεδιαστεί η ενίσχυση είτε με αύξηση της αντοχής, είτε με αύξηση της πλαστιμότητας, είτε με συνδυασμό τους.

Σύμφωνα με τα παραπάνω στο τέλος μιας στατικής μελέτης με βάση τη μη γραμμική ανάλυση επιτυγχάνεται ο πληρέστερος έλεγχος της συμπεριφοράς της κατασκευής, ενώ παράλληλα εξασφαλίζεται η οικονομικότητα χωρίς υποχωρήσεις στην ασφάλεια.

Η εξαγωγή της καμπύλης ικανότητας γίνεται είτε με αύξηση του επιβαλλόμενου φορτίου, είτε με αύξηση επιβαλλόμενων μετατοπίσεων και εύρεση του φορτίου που ισορροπεί τις παραμορφώσεις αυτές. Η πρώτη περίπτωση αναφέρεται ως «Μέθοδος ελέγχου Δυνάμεων» (Load control) και η δεύτερη περίπτωση «Μέθοδος ελέγχου Μετακινήσεων» (Displacement control).

Στην παρούσα πτυχιακή χρησιμοποιήθηκε η μέθοδος των μετατοπίσεων. Η μέθοδος σχετίζεται με επιβολή μετακινήσεων και εύρεση του συντελεστή που πρέπει να πολλαπλασιαστούν τα εξωτερικά φορτία ώστε η προκύπτουσα μετατόπιση στον κόμβο ελέγχου να προκύψει ίση με τη δεδομένη. Ως δεδομένο τίθεται η μέγιστη μετατόπιση του κόμβου ελέγχου , που στην προκειμένη περίπτωση είναι ο κόμβος 87, και διαιρώντας την τιμή αυτή με τον αριθμό βημάτων προκύπτει η μετακίνηση κάθε βήματος. Ως άγνωστες παράμετροι είναι οι επικόμβιες μετατοπίσεις της κατασκευής (εκτός από τη δεδομένη μετατόπιση του κόμβου ελέγχου) και ο φορτιστικός συντελεστής λ.

8.2 ΑΝΑΛΥΣΗ

Επιλέχθηκε η τοποθέτηση πλαστικών αρθρώσεων στα υποστυλώματα, στους αμείβοντες, στους κατακόρυφους και οριζόντιους συνδέσμους δυσκαμψίας και στην κεφαλοδοκό (Σχήμα 8.1).

Σχήμα 8.1 Θέσεις πλαστικών αρθρώσεων

Πρώτα, επιλέγονται τα μέλη όπου εισάγονται πλαστικές αρθρώσεις (hinges) με βάση τα πρότυπα του Αμερικανικού Κανονισμού για τη σεισμική αποκατάσταση υφιστάμενων κατασκευών (ASCE, 2017).

Assign -> Frame -> Hinges

Hinge Assignment	Data	Locat	ion Type		Relative Distance	Absolute Distance	
		lation To Char	- 1			m	
Auto	V R	elative lo Clea	rLength	• 0			Add Hinge
							Modify Hinge
							Delete Hinge
Current Hinge Informat No hinge is currently se	ion flected						Delete Hinge
Current Hinge Informat No hinge is currently se tions	ion elected						Delete Hinge
Current Hinge Informat No hinge is currently se tions Add Specified Hing	<u>ion</u> elected e Assigne	to Existing Hi	nge Assign:	5			Delete Hinge
Current Hinge Informat No hinge is currently se tions Add Specified Hing Relace Existing Hinge Assignm Twimber of Sectord Fra Total Number of Hinge	<u>ion</u> elected nge Assig <u>ents on i</u> son All S	to Existing Hi ns with Specif <u>Jurrently Selec</u> cts: 0 elected Frame	nge Assign: ied Hinge A :ted Frame : Objects: 0	s issigns Objects			Delete Hinge

Εικόνα 8.1 Εισαγωγή πλαστικών αρθρώσεων

Για τα ζυγώματα και την κεφαλοδοκό (Εικόνα 8.2):

om Tables In ASCE 41-17	~
ct a Hinge Table	
ible 9-7.1 (Steel Beams - Flexure)	~
ree of Freedom	Deformation Controlled Hinge Load Carrying Capacity
M2	O Drops Load After Point E
М3	Is Extrapolated After Point E
iee of Freedom M2 M3	Deformation Controlled Hinge Load Carrying Capacity O Drops Load After Point E () Is Extrapolated After Point E

Εικόνα 8.2 Πλαστικές αρθρώσεις για ζυγώματα και κεφαλοδοκό

Για τα υποστυλώματα (Εικόνα 8.3):

Auto Hinge Typ	be		
From Tables	In ASCE 41-17		~
Select a Hinge	Table		
Table 9-7.1	Steel Columns - Fl	exure)	~
Degree of Free	edom		Deformation Controlled Hinge Load Carrying Capacity
○ M2	O P-M2	O Parametric P-M2-M3	O Drops Load After Point E
○ M3	O P-M3		Is Extrapolated After Point E
○ M2-M3	P-M2-M3		
Force Controlle	ed Hinge Load Carr	ying Capacity	
Hinge Dro	ps Load When Max	Force Is Reached	

Εικόνα 8.3 Πλαστικές αρθρώσεις υποστυλωμάτων

Για τους συνδέσμους δυσκαμψίας (Εικόνα 8.4):

Auto Hinge Type	
From Tables In ASCE 41-17	~
Select a Hinge Table	
Table 9-8 (Steel Braces - Axial)	~
Deformation Controlled Hinge Load Carrying Capacity	
O Drops Load After Point E	
Is Extrapolated After Point E	

Εικόνα 8.4 Πλαστικές αρθρώσεις για συνδέσμους δυσκαμψίας

8.2.1 ΟΡΙΣΜΟΣ ΑΝΕΛΑΣΤΙΚΗΣ ΣΤΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΒΟΛΗ ΤΟΥ ΟΡΙΖΟΝΤΙΟΥ ΣΕΙΣΜΙΚΟΥ ΦΟΡΤΙΟΥ.

Όπως είναι γνωστό, η σεισμική δράση δεν εφαρμόζεται σε έναν αφόρτιστο φορέα, αλλά σε έναν φορέα στον οποίο ενεργούν ήδη κάποια κατακόρυφα φορτία. Ορίζουμε λοιπόν, μια πρώτη ανελαστική στατική ανάλυση (PUSHOVER_GRAVITY), η οποία θα αφορά αποκλειστικά τα κατακόρυφα φορτία που ασκούνται στον φορέα κατά τη διάρκεια του σεισμού, (Εικόνα 8.5).

oad Case Name		N	otes	Load Case Type	
PUSHOVER_GRAVITY	Set Def N	lame	Modify/Show	Static	✓ Design
nitial Conditions				Analysis Type	
Zero Initial Condition	ons - Start from Unstressed State	e		O Linear	
O Continue from Stat	e at End of Nonlinear Case			Nonlinear	
Important Note:	Loads from this previous case a	are included in th	he current case		
lodal Load Case				Geometric Nonlinearity	Parameters
All Modal Loads Appl	ed Use Modes from Case	MC	DDAL ~	None	
anda Applied				O P-Detta	
Load Type	Load Name	Scale Factor		O P-Delta plus Large	Displacements
Load Pattern V	DEAD	/ 1,]	Mass Source	
Load Pattern	DEAD	1,	bbA	MASS_SOURCE	~
Load Pattern	ΕΠΙΚΑΛ	1,	~~~	Contractor de la contractor	
Load Pattern	SNOW	0,3	Modify		
			Delete		
			Delete		
Other Parameters				_	
Load Application	Full Load		Modify/Show		ок
Results Saved	Final State Only		Modify/Show	C	ancel
Nonlinear Parametere	Default		Modify/Show		

Εικόνα 8.5 Ορισμός ανελαστικής στατικής ανάλυσης για τα κατακόρυφα φορτία

Πλέον μπορεί να οριστεί η ανελαστική στατική ανάλυση για τον άξονα Υ.

Define \rightarrow Load Cases \rightarrow Add New Load Case και ονομασία PUSHOVER_Y.

Η συγκεκριμένη ανάλυση θα οριστεί με αρχικές συνθήκες που προέκυψαν από το τέλος της προηγούμενης ανελαστικής ανάλυσης (**PUSHOVER_GRAVITY**), δηλαδή με τα κατακόρυφα φορτία να δρουν ήδη στον φορέα, χρησιμοποιώντας τη μέθοδο των μετατοπίσεων. (Εικόνα 8.6 & 8.7)

Load Case Name			Notes	Load Case Type	
PUSHOVER_Y		Set Def Name	Modify/Show	Static V Der	sign
nitial Conditions Zero Initial (Continue fro	Conditions - Start from om State at End of Nonl	Unstressed State	PUSHOVER_GRAVITY ~	Analysis Type O Linear Nonlinear	
All Modal Load Case All Modal Load Loads Applied Load Typ	e Is Applied Use Modes f ve Loa	rom Case	MODAL-1 V	Geometric Nonlinearity Parameters None P-Deta P-Deta plus Large Displacements	
Accel	V UY	~ 1,		Mass Source	
			Add Modify Delete		
Other Parameter	s	Disol Control	HadderShau	ОК	
Luad Applicatio		Note Chatra	modify/Snow		
Results Saved	M	utiple States	Modify/Show	Cancel	

Εικόνα 8.6 Καθορισμός της LOAD CASE που περιέχει την Πλευρική Δύναμη για την πραγματοποίηση της Μη Γραμμικής Ανάλυσης για τον άζονα Υ

.oao Applicat	ion Control			
Full Load	t			
Displace	ment Control			
Control Displa	cement			
Use Con	ijugate Displace	ement		
Use Mon	itored Displace	ement		
Load to a Mo	onitored Display	cement Magni	tude of	0,5
Ionitored Dis	placement			
			at loint	87
DOF	U2	~	di sonit	
DOF General	U2 zed Displacem	ent V	acount	
DOF Generali dditional Cor	U2 ized Displacem	ent cements		~~
DOF Generali Additional Cor None	U2 ized Displacem	ent cements		Modify/Show
DOF Generali dditional Cor None	U2 ized Displacem	ent cements		Modify/Show

Εικόνα 8.7 Παράμετροι ανελαστικής στατικής ανάλυσης για το PUSHOVER_Υ

Ομοίως και για τον Χ άξονα, (Εικόνα 8.8 & 8.9).

.oad Case Name			Notes	Load Case Type	
PUSHOVER_X		Set Def Name	Modify/Show	Static ~	Design
nitial Conditions				Analysis Type	
Zero Initial Conditi	ons - Start from U	nstressed State		O Linear	
Continue from Stat	te at End of Nonlin	ear Case	PUSHOVER_GRAVITY ~	Nonlinear	
Important Note:	Loads from this p	previous case are includ	ded in the current case		
Iodal Load Case				Geometric Nonlinearity Parameters	
All Modal Loads App	lied Use Modes fr	om Case	MODAL-1 V	None	
oads Applied				O P-Detta	
Load Type	Load	Name Scale	Factor	P-Delta plus Large Displacement	nts
Accel	UX	~ 1,		Mass Source	
Accel	UX	1,	Add	MASS_SOURCE	~
			Modify		
			Delete		
Other Parameters					
Load Application	D	spl Control	Modify/Show	ок	
Results Saved	Mu	tiple States	Modify/Show	Cancel	
				Current	

Εικόνα 8.8 Καθορισμός της LOAD CASE που περιέχει την Πλευρική Δύναμη για την πραγματοποίηση της Μη Γραμμικής Ανάλυσης για τον άζονα Χ

	on Control		
O Full Load			
Displace	ment Control		
Control Displa	cement		
O Use Conj	ugate Displacement		
Use Mon	itored Displacement		
Load to a Mo	nitored Displacement Ma	onitude of	
Louis to a mo	nieres propracement nis	ginde er	
Monitored Disp	placement		
DOF	U1 ~	at Joint 87	
O Generali:	zed Displacement		
	trolled Displacements		
Additional Con		Modify/Sh	0W
Additional Con			

Εικόνα 8.9 Παράμετροι ανελαστικής στατικής ανάλυσης για το PUSHOVER_Χ

Εικόνα 8.10 Κόμβος παρακολούθησης της ανάλυσης

Μετά από αυτές τις ενέργειες εκτελούμε την ανελαστική στατική ανάλυση ταυτόχρονα με τις συμβατικές ελαστικές αναλύσεις, επιλέγοντας:

```
Analyze->Run analysis->Run now
```

Type Linear Static Linear Static Linear Static	Status Not Run Not Run	Action Run Run	Run/Do Not Run Case
Linear Static			Show Case
Linear Static Modal	Not Run Not Run Not Run	Run Run	Delete Results for Case
Response Spectrum Response Spectrum Modal Nonlinear Static	Not Run Not Run Not Run	Run Run Run	Run/Do Not Run All Delete All Results
Nonlinear Static	Not Run Not Run	Run Run	Show Load Case Tree
			Save Named Set
Show Mess	ages after Run		Model-Alive
	lodal tesponse Spectrum tesponse Spectrum lodal lonlinear Static lonlinear Static Show Mess	Iodal Not Run tesponse Spectrum Not Run tesponse Spectrum Not Run Iodal Not Run Ionlinear Static Not Run Ionlinear Static Not Run Ionlinear Static Not Run Show Messages after Run	fodal Not Run Run tesponse Spectrum Not Run Run tesponse Spectrum Not Run Run fodal Not Run Run lonlinear Static Not Run Run lonlinear Static Not Run Run lonlinear Static Not Run Run

Εικόνα 8.11 Παράθυρο που εμφανίζεται πριν την εκτέλεση της ανάλυσης

Παρουσίαζεται η σταδιακή εμφάνιση των πλαστικών αρθρώσεων (hinges) που σχηματίζονται με την διαδοχή των βημάτων της ανελαστικής στατικής ανάλυσης. Ο χρωματισμός της κάθε πλαστικής άρθρωσης δηλώνει τις στάθμες επιτελεστικότητας. Το SAP2000 τις ορίζει ως εξής:

άμεση χρήση μετά το σεισμό (IO – Immediate Occupancy) (πράσινο)

- προστασία ανθρώπινης ζωής (LS Life Safety) (γαλάζιο)
- αποφυγή κατάρρευσης (CP Collapse Prevention) (κόκκινο)

Απεικονίζονται οι παραμορφωμένες καταστάσεις του φορέα, σε κάθε βήμα όπου υπάρχει μεταβολή των πλαστικών αρθρώσεων της ανάλυσης (Σχ.8.2 έως 8.9).

Σχήμα 8.2 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 7 για τον άζονα Υ

Σχήμα 8.3 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 8 για τον άζονα Υ

Σχήμα 8.4 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 10 για τον άζονα Υ

Σχήμα 8.5 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 12 για τον άζονα Υ

Σχήμα 8.6 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 4 για τον άζονα Χ

Σχήμα 8.7 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 11 για τον άζονα Χ

Σχήμα 8.8 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 12 για τον άζονα Χ

Σχήμα 8.9 Παραμορφωμένος φορέας με τις πλαστικές αρθρώσεις που έχουν αναπτυχθεί στο βήμα 15 για τον άζονα Χ

Με την ολοκλήρωση της διαδικασίας της επίλυσης, το πρόγραμμα έχει υπολογίσει την καμπύλη ικανότητας (*pushover curve*) του φορέα, η οποία μπορεί να εμφανιστεί επιλέγοντας

Display \rightarrow Show Static Pushover Curve.

Η καμπύλη ικανότητας ενός φορέα αντιστοιχεί στο διάγραμμα τέμνουσας βάσης– μετακίνησης στην κορυφή και αποτελεί ένα πολύ χρήσιμο εργαλείο για το μηχανικό, καθώς δίνει άμεσα και με εποπτικό τρόπο χρήσιμες πληροφορίες για τη σεισμική συμπεριφορά της κατασκευής. Οι πληροφορίες αυτές αφορούν μεγέθη δυνάμεων (π.χ. διαθέσιμη αντοχή, υπεραντοχή κτλ), μεγέθη παραμορφώσεων (π.χ. διαθέσιμη πλαστιμότητα), ενώ μπορεί να χρησιμοποιηθεί και για την εκτίμηση δεικτών όπως ο διαθέσιμος συντελεστής συμπεριφοράς q.

Η καμπύλη ικανότητας που προκύπτει από την ανάλυση του μονώροφου φορέα παρουσιάζεται στα σχήματα 8.10 και 8.11.

Σχήμα 8.10 Εμφάνιση καμπύλης ικανότητας φορέα για τον άζονα Υ

Σχήμα 8.11 Εμφάνιση καμπύλης ικανότητας φορέα για τον ά
 ζοναX

<u>ΚΕΦΑΛΑΙΟ 9: ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

Στην παρούσα πτυχιακή εργασία υλοποιήθηκε η ανάλυση και η διαστασιολόγηση ενός μονώροφου βιομηχανικού κτιρίου από χάλυβα, με τη χρήση του προγράμματος SAP2000, όπου αφού επιλέχθηκαν οι βέλτιστες διατομές, ακολούθησε η αποτίμηση της αντοχής της κατασκευής.

Ξεκινώντας τον σχεδιασμό του φορέα και έπειτα από πολλαπλές δοκιμές στη διαστασιολόγησή του, προέκυψαν οι συγκεκριμένες διατομές που στην ανάλυση Pushover απέδειξαν πως η κατασκευή είναι ικανή να φέρει και να αντέξει τις συγκεκριμένες δράσεις που έχουν οριστεί.

Η μέθοδος Pushover πραγματοποιείται προκειμένου να ληφθεί υπόψην η ανελαστική συμπεριφορά που έχουν οι κατασκευές. Προσφέρεται μια εκτίμηση των απαιτούμενων παραμορφώσεων των διατομών της κατασκευής υπό τη επίδραση σεισμού, παρακολουθώντας που θα αστοχήσει η κατασκευή, που υπάρχουν πιθανές αδυναμίες του φορέα, αξιολογώντας τελικά την ευστάθεια του δομικού συστήματος.

Εισάγοντας τις πλαστικές αρθρώσεις στις βέλτιστες διατομές και υλοποιώντας την ανάλυση Pushover παρατηρείται πως και στις δύο διευθύνσεις στην αρχή των καμπυλών ικανότητας υπάρχει μια σχεδόν γραμμική αύξηση της αύξησης της τέμνουσας βάσης με την αύξηση της μετατόπισης που υποδηλώνει της ελαστική συμπεριφορά της κατασκευής. Και στις δύο διευθύνσεις, οι καμπύλες φτάνουν σε ένα μέγιστο σημείο που αντιπροσωπεύει τη μέγιστη αντοχή της κατασκευής πριν αρχίσει η μη γραμμική συμπεριφορά. Η μέγιστη δύναμη στη διεύθυνση Y ($\approx 3.8 \times 10^3 [kN]$ και μετατόπιση $\approx 350 \times 10^{-3} [m]$) είναι μεγαλύτερη από αυτήν στη διεύθυνση X ($\approx 2.6 \times 10^3 [kN]$ και μετατόπιση $\approx 270 \times 10^{-3} [m]$), που υποδηλώνει ότι η κατασκευή είναι πιο δύσκαμπτη στην διεύθυνση Y. Αυτό συμβαίνει επειδή ο ισχυρός άξονας των υποστυλωμάτων είναι παράλληλος με την Y διεύθυνση. Αξίζει να σημειωθεί ότι, στη διεύθυνση X, στη μετελαστική περιοχή παρατηρείται δύο φορές αλλαγή κλίσης (με τέμνουσα βάσης $\approx 2,4 \times 10^3 [kN]$ και μετατόπιση $\approx 155 \times 10^{-3} [m]$), δηλαδή αλλαγή δυσκαμψίας, που υποδηλώνει πως ο φορέας είναι πιο εύκαμπτος έως ότου φτάσουμε σε μηχανισμό.

Πιο αναλυτικά, στη διεύθυνση Υ, παρατηρείται πως με τέμνουσα βάσης $\approx 3,3 * 10^3 [kN]$ και μετατόπιση $\approx 200 * 10^{-3} [m]$ (βήμα 7) ενεργοποιούνται για πρώτη φορά οι πλαστικές αρθρώσεις στις βάσεις των υποστυλωμάτων με χρώμα πράσινο, δηλαδή στάθμη επιτελεστικότητας ΙΟ (άμεση χρήση μετά το σεισμό) (Σχ.8.2). Έπειτα, με τέμνουσα βάσης \approx 3,4 * 10³ [kN] και μετατόπιση $\approx 250 * 10^{-3} [m]$ (βήμα 8) ενεργοποιούνται πλαστικές αρθρώσεις και στους αμείβοντες, στο άκρο που συνδέονται με τα υποστυλώματα με στάθμη επιτελεστικότητας επίσης ΙΟ (Σχ.8.3). Με τέμνουσα βάσης $\approx 3.8 \times 10^3 [kN]$ και μετατόπιση $\approx 350 * 10^{-3} [m]$ (βήμα 10) παρατηρείται ότι στις ήδη υπάρχουσες πλαστικές αρθρώσεις αλλάζει το χρώμα, από πράσινο γίνεται γαλάζιο, δηλαδή στάθμη επιτελεστικότητας LS (προστασία ανθρώπινης ζωής) (Σχ.8.4). Τέλος, με τέμνουσα βάσης \approx 1,6 * 10³[kN] και μετατόπιση $\approx 310 * 10^{-3} [m]$ (βήμα 12) παρατηρείται ότι οι πλαστικές αρθρώσεις στις βάσεις των υποστυλωμάτων έχουν γίνει κόκκινες, στάθμη επιτελεστικότητας CP (αποφυγή κατάρρευσης) που σημαίνει ότι έχουμε μηχανισμό (Σχ.8.5). Αντίθετα, στη διεύθυνση Χ, ενεργοποιούνται για πρώτη φορά οι πλαστικές αρθρώσεις στο σημείο με τέμνουσα βάσης ≈ 1,7 * $10^{3}[kN]$ και μετατόπιση $\approx 50 * 10^{-3} [m]$ (βήμα 4) στους κατακόρυφους συνδέσμους δυσκαμψίας με χρώμα πράσινο, δηλαδή στάθμη επιτελεστικότητας ΙΟ (Σχ.8.6) ενώ με τέμνουσα βάσης $\approx 2.6 * 10^3 [kN]$ και μετατόπιση $\approx 344 * 10^{-3} [m]$ (βήμα 11) γίνονται γαλάζιες, στάθμη επιτελεστικότητας LS (Σχ.8.7). Στη συνέχεια, για τέμνουσα βάσης ≈ 2,6 * $10^{3}[kN]$ και μετατόπιση $\approx 273 * 10^{-3} [m]$ (βήμα 12) ενεργοπιούνται πλαστικές αρθρώσεις και στις βάσεις των υποστυλωμάτων με χρώμα πράσινο, στάθμη επιτελεστικότητας ΙΟ (Σχ.8.8). Τελικά, για τέμνουσα βάσης $\approx 1.8 * 10^3 [kN]$ και μετατόπιση $\approx 300 * 10^{-3} [m]$ (βήμα 15) οι πλαστικές αρθρώσεις στο άκρο των κατακόρυφων συνδέσμων δυσκαμψίας που ενώνονται με τη βάση του υποστυλώματος γίνονται κόκκινες, στάθμη επιτελεστικότητας CP (Σχ.8.9).

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- Ι. Βάγιας, Ι. Ερμόπουλος, Γ. Ιωαννίδης, «Σχεδιασμός Δομικών Έργων από Χάλυβα με βάση τα τελικά κείμενα των Ευρωκωδίκων», Εκδόσεις Κλειδάριθμος, Αθήνα 2005
- ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΥΕΣ Συμπεριφορά και Ανάλυσις ΑΝΤΩΝΙΟΥ Ν. ΚΟΥΝΑΔΗ (Καθηγητού ΕΜΠ)
- 3. Σημειώσεις μαθήματος Αντισεισμικού Σχεδιασμού Πανεπιστημίου Πελοποννήσου
- ΣΗΜΕΙΩΣΕΙΣ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ, ΤΕΥΧΟΣ 1, ΓΙΑΝΝΗΣ Ν. ΨΥΧΑΡΗΣ Καθηγητής Ε.Μ.Π.
- Ερμόπουλος Ι. (2005). «Ευρωκώδικας 1 Βασικές αρχές σχεδιασμού και δράσεις επί των κατασκευών – Ερμηνευτικά σχόλια και παραδείγματα εφαρμογής», 2^η Έκδοση, Εκδόσεις Κλειδάριθμος
- 6. <<u>https://www.bebis-ktiria.gr/?page_id=142</u>>
- 7. <u>https://www.bountimas.com/2-στατικές-μελέτες/πλεονεκτήματα-μεταλλικών-</u> κατασκευών/
- <<u>https://docplayer.gr/amp/31569758-Ethniko-metsovio-polytehneio-sholi-politikon-mihanikon-tomeas-domostatikis-ergastirio-metallikon-kataskeyonshediasmos-emporikoy-metallikoy-ktirioy.html</u>>
- 9. <u>https://eng.ucy.ac.cy/petros/Courses/CEE501/CEE501_11_introSAP2000.pdf</u>
- 10. <<u>https://www.csiamerica.com/products/sap2000/features/user-interface</u>>
- 11. <u>http://lee.civil.ntua.gr/pdf/mathimata/antiseismikes_kataskeves/simeioseis/EC8-</u> 2014.pdf
- 12. <<u>http://nomoskopio.gr/eak2000_2.php?toc=0&printWindow&</u>>
- 13. <<u>http://www.kleidarithmos.gr/main/books/46061/files/assets/basic-html/page20.html</u>>
- 14. https://www.teetas.gr/sites/default/files/seminaria/trezos_eurocodesiteaec0ec1.pdf
- 15. <u>https://kalimerafile.files.wordpress.com/2013/04/122110109-</u> <u>ceb1cebdcf84ceb9cf83ceb5ceb9cf83cebcceb9cebacf8ccf82-</u> <u>cf83cf87ceb5ceb4ceb9ceb1cf83cebccf8ccf82-1.pdf</u>
- 16. <<u>https://www.deltaengineering.gr/%CE%B1%CE%BD%CF%84%CE%B9%CF%83</u> %CE%B5%CE%B9%CF%83%CE%BC%CE%B9%CE%BA%CE%BF%CF%83-

<u>%CF%83%CF%87%CE%B5%CE%B4%CE%B9%CE%B1%CF%83%CE%BC%CE</u> <u>%BF%CF%83-%CE%BA%CE%B1%CE%B9-</u> %CF%83%CE%B5%CE%B9%<u>CF%83%CE%BC%CE%B9/></u>

- 17. http://www.episkevesold.civil.upatras.gr/English/notes/7.pdf
- 18. <u>http://lee.civil.ntua.gr/pdf/mathimata/antiseismiki_texnologia_2/simeioseis/notes_psyx</u> <u>arh_teuxos_2.pdf</u>
- 19. https://www.lhlogismiki.gr/wp-content/uploads/2014/02/Fespapushover.pdf
- 20. <u>https://prefabrikevim.com/el/Τι-είναι-μια-ελαφριά-μεταλλική-κατασκευή-και-ποια-</u> είναι-τα-χαρακτηριστικά-της%3<u>B/</u>
- 21. https://www.teetas.gr/sites/default/files/seminaria/trezos_eurocodesiteaec0ec1.pdf
- 22. https://www.metallemporiki.gr/product/monotika-panel/panel-orofis-petrovamvaka/
- 23. <u>http://okeanis.lib.puas.gr/xmlui/bitstream/handle/123456789/227/pol_00598.pdf?sequ</u> ence=1&isAllowed=y
- 24. https://pdfcoffee.com/qdownload/en-1993-1-1-el-3pdf-pdf-free.html